Static and Dynamic Three-Phase Contact Lines

  • L. M. Pismen
Part of the International Centre for Mechanical Sciences book series (CISM, volume 428)


The lectures review the statics and dynamics of the gas-liquid-solid contact line, with the emphasis on the role of intermolecular forces and mesoscopic dynamics in the immediate vicinity of the three-phase boundary. We discuss paradoxes of the existing hydrodynamic theories and ways to resoluve them by taking account of intermoleculr forces, activated slip in the first molecular layer, diffuse character of the gas-liquid interface and interphase transport.


Contact Angle Inclination Angle Contact Line Solvability Condition Intermolecular Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

Section 1. The standard reference for general thermodynamic relations is

  1. L.D. Landau, and E.M. Lifshitz, v. V, Statistical Physics, Part I, Pergamon Press, 1980.Google Scholar
  2. J.H. Israelachvili, Intermolecular and Surface Forces, Academic-Press, New York, 1992. For review of the molecular basis of capillarity, seeGoogle Scholar
  3. J.S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Oxford University Press, 1982.Google Scholar
  4. J.D. van der Waals, Z. f. Phys. Chem. 13 657 (1894)Google Scholar
  5. J.S. Rowlinson, J. Stat. Phys. 20 197 (1979).CrossRefMATHMathSciNetGoogle Scholar

Section 2. The primary reference for the origins of disjoining potential is

  1. B.V. Derjaguin, N.V. Churaev and V.M. Muller, Surface Forces, Consultants Bureau, New York, 1987.Google Scholar
  2. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar
  3. G.J. Merchant and J.B. Keller, Phys. Fluids A 4, 477 (1992).CrossRefMathSciNetGoogle Scholar
  4. C. Bauer and S. Dietrich, Eur. Phys. J. B 10 767 (1999).CrossRefGoogle Scholar
  5. A. Hazareesing and M. Mézard, Phys. Rev. E 60 1269 (1999).CrossRefGoogle Scholar

Section 3. For early “classical” fluid-mechanical theory of a moving contact line, see

  1. C. Huh and L.E. Scriven, J. Coll. Int. Sci. 35, 85 (1971).CrossRefGoogle Scholar
  2. E.B. Dussan V and S.H. Davis, J. Fluid Mech. 65, 71 (1974).CrossRefMATHGoogle Scholar
  3. L.M. Hocking, J. Fluid Mech. 79, 209 (1977); 211, 373 (1990).CrossRefMATHMathSciNetGoogle Scholar
  4. H.P. Greenspan, J. Fluid Mech. 84, 125 (1978).CrossRefMATHGoogle Scholar
  5. P.J. Haley and M.J. Miksis, J. Fluid Mech. 223, 57 (1991).CrossRefMATHMathSciNetGoogle Scholar
  6. Yu.D. Shikhmurzaev, J. Fluid Mech. 334 211 (1997).CrossRefMATHMathSciNetGoogle Scholar

Section 4. Various aspects of fluid-mechanical treatment of a moving contact line with account of van der Waals forces is found in

  1. C.A. Miller and E. Ruckenstein, J. Coll. Interface Sci. 48, 368 (1974).CrossRefGoogle Scholar
  2. H. Hervet and P.G. de Gennes, C. R. Acad. Sci. 299 499 (1984).Google Scholar
  3. P.G. de Gennes, X.Hue, and P.Levinson, J. Fluid Mech. 212, 55 (1990)CrossRefMATHMathSciNetGoogle Scholar
  4. L.M. Hocking, Phys. Fluids A 5, 793 (1993).CrossRefGoogle Scholar
  5. L.M. Pismen, D.Y. Rubinstein, and I. Bazhlekov, Phys. Fluids 12. 480 (2000).CrossRefMATHMathSciNetGoogle Scholar
  6. E. Ruckenstein and C.S. Dunn, J. Coll. Interface Sci. 59, 135 (1977).CrossRefGoogle Scholar
  7. L.M. Pismen and B.Y. Rubinstein, Langmuir, 17 5265 (2001).CrossRefGoogle Scholar

Section 5. Diffuse interface theory coupled with hydrodynamics is reviewed by

  1. D.M. Anderson, G.B. McFadden, and A.A. Wheeler, Ann. Rev. Fluid. Mech. 30 139 (1998).CrossRefMathSciNetGoogle Scholar
  2. P. Seppecher, Int. J. Engng Sci. 34 977 (1996).CrossRefMATHGoogle Scholar
  3. D. Jacqmin, J. Fluid Mech. 402, 57 (2000).CrossRefMATHMathSciNetGoogle Scholar
  4. L.M. Pismen and Y. Pomeau, Phys. Rev. E, 62 2480 (2000).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • L. M. Pismen
    • 1
  1. 1.Technion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations