A FEM/HBEM Approach for the Simulation of Noise Radiation from a Rolling Tire

  • Lothar Gaul
  • Marcus Wagner
  • Matthias Fischer
  • Udo Nackenhorst
  • Bodo Nolte
Part of the International Centre for Mechanical Sciences book series (CISM, volume 433)


The noise radiation from rolling tires is studied numerically by using a sequential finite-element (FEM) — hybrid boundary-element (HBEM) approach of the field equations. The equations of motion for the rolling wheel are developed in the frame of an Arbitrary Eulerian-Lagrangian description with a time independent formulation for steady state rolling and a spatial description of vibrations. The calculation of steady state rolling is strongly nonlinear due to the nonlinear material behavior of the tire composites, large displacements with loads depending on the shape and the contact problem itself. This is treated by an incremental-iterative approach including the computation of the contact normal and shear tractions. After the configuration of steady state rolling is known, a modal analysis is performed in this deformed state. For the eigen-analysis small linear vibratory displacements are superimposed on the large elastic deformations of the fixed control state.

The noise radiation caused by the vibration modes is computed by the symmetric hybrid boundary element method (Gaul and Wagner, 1996; Wagner, 2000; Gaul et al., 2000). The relative normal velocities at the wheel surface are the Neumann data of the acoustic domain. After selecting a road impedance the sound pressure distribution on the wheel and the road surface are calculated. The sound field in the domain surrounding the wheel and road is determined hereafter by an efficient field-point algorithm inherent in the HBEM.


Sound Pressure Road Surface Arbitrary Lagrangian Eulerian Sound Radiation Wheel Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bschorr, O. (1986). Reduktion von Reifenlärm. Automobil—Industrie 6 /86: 721–729.Google Scholar
  2. Dumont, N. A., and Wagner, M. (2000). The hybrid stress boundary element method applied to half-space problems in acoustic fluid-structure interaction. In Congresso Ibero Latino Americano sobre Métodos Computacionais para Engenharia. Google Scholar
  3. Gaul, L., and Fiedler, C. (1997). Methode der Randelemente in Statik und Dynamik. Wiesbaden/Braunschweig: Friedrich Vieweg & Sohn.MATHGoogle Scholar
  4. Gaul, L., and Wagner, M. (1996). A new hybrid symmetric boundary element method in elastodynamics. In Saranen, J., and Constanda, C., eds., 4th International Conference on Integral Methods in Science and Engineering.Google Scholar
  5. Gaul, L., Wagner, M., and Wenzel, M. (2000). Hybrid boundary element methods in frequency and time domain. In von Estorff, O., ed., Boundary Elements in Acoustics, Advances and Applications, 121–164. Southampton: WIT Press.Google Scholar
  6. Nackenhorst, U., and Nolte, B. (1998). Numerische simulation von rollgeräuschen. In Nixdorff, K., ed., Proceedings Anwendungen der Akustik in der Wehrtechnik.Google Scholar
  7. Nackenhorst, U. (1993). On the finite element analysis of steady state rolling contact. In Aliabadi, M., and Brebbia, C., eds., Contact Mechanics, Computational Techniques. Southampton: Computational Mechanics Publications.Google Scholar
  8. Saemann, E.-U. (1997). Schallquellenortung am Reifen mittels akustischer Holographie im Zeitbereich. In Reifen—Fahrbahn—Fahrwerk, VDI—Berichte, 1350. Düsseldorf, Germany: VDI—Verlag.Google Scholar
  9. Stenschke, R., and Jäcker, M. (1996). Einfluß von Reifen und Fahrbahnen auf das Reifen/Fahrbahn-Geräusch von Kraftfahrzeugen und administrative Maßnahmen zur Verminderung. In Proceedings Innovative Ideen zur Minderung der Kfz-Rollgeräusche. Google Scholar
  10. SYSNOISE. (1996). User’s Manual, Version 5.3A. Leuven, Belgium: LMS Numerical Technologies N. V.Google Scholar
  11. Tonhauser, J. (1996). Einfluß des Reifen-/Fahrbahngeräusches auf das Außengeräusch von PKW; Stand der Technik. In Proceedings Innovative Ideen zur Minderung der Kfz-Rollgeräusche. Google Scholar
  12. Wagner, M. (2000). Die hybride Randelementmethode in der Akustik und zur Struktur-Fluid-Interaktion. Ph.D. Dissertation, Institute A of Mechanics, University of Stuttgart.Google Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Lothar Gaul
  • Marcus Wagner
  • Matthias Fischer
    • 1
  • Udo Nackenhorst
    • 2
  • Bodo Nolte
    • 3
  1. 1.Institute A of MechanicsUniversity of StuttgartGermany
  2. 2.Institute for Structural and Computational MechanicsUniversity of HanoverGermany
  3. 3.Institute of MathematicsUniversity of the Federal Armed Forces HamburgGermany

Personalised recommendations