# Finite Displacements in Reciprocity Based Multi-Domain BE/FE Formulations

• Pavol Novák
• Marián Handrik
Part of the International Centre for Mechanical Sciences book series (CISM, volume 433)

## Abstract

In this chapter, Trefftz (T-) functions are used for the development of Multi-Domain (MD) BEM/FEM based on the reciprocity relations. This reciprocity principles are well known from the Boundary Element formulations, however, using the Trefftz functions (polynomials, fundamental solutions with the source point defined outside the sub-domain, or other type of non-singular T-function) in the reciprocity relations instead of the fundamental solutions yields the non-singular integral equations for the evaluation of corresponding sub-domain relations. A weak form satisfaction of the equilibrium is used for the inter-domain connectivity relations. For linear problems, the element stiffness matrices are defined in the boundary integral equation form. In non-linear problems the total Lagrangian formulation leads to the evaluation of the boundary integrals over the original (related) sub-domain evaluated only once during the solution and to the domain integrals containing the non-linear terms. Considering the examples of simple tension, pure bending and tension of fully clamped rectangular 2D domain (2D stress/strain problems) for large strain-large rotation problems, the use of the initial stiffness, the Newton-Raphson procedure, and the incremental Newton- Raphson procedure is considered.

## Keywords

Boundary Element Method Boundary Integral Equation Simple Tension Boundary Element Formulation Finite Displacement
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. Trefftz, E. (1926). Ein Gegenstück zum Ritzschen Verfahren, Proc. 2nd In nt.Congress of Applied Mechanics,Zürich.Google Scholar
2. Kompis V. (1994). Finite elements satisfying all governing equations inside the element, Computers & Struct., 4, 273–278.
3. Kompis, V., Jakubovicovâ, L., Konkol F. (1999) Non-singular reciprocity based BEM/FEM formulations, paper presented at IUTAM/IACEM/IABEMSymposium on Advanced Math. and Comput. Mech. Aspects of the Bound. Elem. Meth., Cracow.Google Scholar
4. Kolodziej, J. A., Uscilowska A. (1997). Trefftz-type procedure for Laplace equation on domains with circular holes, circular inclusions, corners, slits and symmetry, Computer Assisted Mechanics and Eng. Sciences, 4, pp. 501–519.
5. Jirousek, J., Wroblewski A. (1997). T-elements: State of the art and future trends, Archives of Comput. Mech., 3, 323–434.
6. Szybinski, B., Zielinski, A. P. (1995). Alternative T-complete systems of shape functions applied in analytical Trefftz finite elements, Num. Meth. for Part. Duff. Eqs., 11, 375–388.
7. Maunder, E. A. W., Ramsay, A. C. A. (1993). Quadratic equilibrium elements, in: J. Robinson (ed.), FEM Today and Future, Robinson and Associates,pp. 401–407.Google Scholar
8. Teixeira de Freitas, J. A., Cismasiu C., Wang, Z. M. (1999). Comparative Analysis of Hybrid-Trefftz Stress and Displacement elements, Archives of Computational Methods in Engineering, 6, 35–59.
9. Kompis, V., Frastia, L. (1997). Polynomial representation of hybrid finite elements, Computer Assisted Mechanics and Eng. Sciences, 4, 521–532.
10. Cruse, T. A. (1997). An improved boundary integral equation method for three dimensional elastic stress analysis: Polynomial representation of hybrid finite. elements, Computer Assisted Mechanics and Eng. Sciences, 4, 521–532.Google Scholar
11. Cruse, T. A. (1974). An improved boundary integral equation method for three dimensional elastic stress analysis, Computers & Structures, 5, 741–754.
12. Lachat, J. C., Watson, J. O. (1976). Effective numerical treatment of boundary integral equation: a formulation for three dimensional elasto-statics, Int. J. Num. Meth. Eng., 10, 991–1005.
13. Cheung, Y. K., Jin, W. G., Zienkiewicz, 0. C. (1989). Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions, Commun. In Appl. Numer. Methods,5,159–169.Google Scholar
14. Cheung, Y. K., Jin, W. G., Zienkiewicz, 0. C. (1991). Solution of Helmholtz equation by Trefftz method, Int. J. Numer. Meth. Engng., 32, 63–78.
15. Kompis, V., Oravec, J., Btíry, J. (1999). Reciprocity based FEM, Strojnícky lasopis (Mechanical Engineering), 50, 188–201.Google Scholar
16. Kompis, V., Zmindâk, M., Jakubovicovâ, L. (1999). Error estimation in multi-domain BEM (Reciprocity based FEM) In: ECCM99, European Conference on Computational Mechanics, Ed. W. Wunderlich, CD-ROM, München.Google Scholar
17. Kuhn, G., Partheimüller, P., Köhler, O. (1998). Regularization and evaluation of singular domain integrals in boundary element methods, in Singular Integrals in Boundary Element Methods, eds V. Slâdek, J. Slâdek, Comput. Mech. Publ., Southampton, pp. 223–262.Google Scholar
18. Balai, J., Slâdek, J., Slâdek, V. (1989). Stress Analysis by Boundary Element Method, Elsevier.Google Scholar
19. Bausinger, R., Kuhn,G. (1987). The Boundary Element Method (in German), Expert Verlag, Germany.Google Scholar
20. Blacker, T., Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancement, Int. J. Num. Meth. Eng.,37, 517–536.
21. Niu, Q., Shephard, M. S. (1993). Superconvergent extraction techniques for finite element analysis, Int. J. Num. Meth. Eng., 36, 811–836.
22. Zienkiewicz, O. C., Taylor, R. L. (1991). The Finite Element Method, Vols. I-II, 4-th Edition, Wiley.Google Scholar
23. Bathe, K.-J. (1996). The Finite Element Procedures, Prentise Hall, Englewood Cliffs.Google Scholar
24. Kompis, V., Jakubovicovâ, L. Errors in modelling high order gradient fields using isoparametric and reciprocity based FEM, to be published.Google Scholar
25. Maunder, E. A. W., Kompis, V. Stress recovery techniques based on Trefftz functions, see the CD ROM of this Conference.Google Scholar
26. Forster, A., Kuhn, G. (1994). A field boundary element formulation for material nonlinear problems at finite strains, Int. J. Solids Structures, 31, 1777–1792.
27. Prieto, I., Ibân, A. L., Garrido, J. A. (1999). 2D analysis for geometrically non-linear elastic problem using BEM, Eng. Anal. with Bound. Elements, 23, 247–256.Google Scholar