Advertisement

Computational Magnetohydrodynamics Part I — Fundamentals

  • André Thess
  • Dietmar Schulze
Part of the International Centre for Mechanical Sciences book series (CISM, volume 418)

Abstract

Computational Magnetohydrodynamics (CMHD) is the science of numerically solving the coupled set of equations of fluid dynamics and electrodynamics occasionally supplemented by mathematical models for phase transitions including solidification, melting, evaporation and condensation.

Keywords

Magnetic Field Large Eddy Simulation Direct Numerical Simulation Lorentz Force Magnetic Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mai S. (Ed.) 1994: Proceedings of the First International Congress on Electromagnetic Processing of Materials, Nagoya 25–28 October 1994.Google Scholar
  2. Mai, S. (Ed.), 2000: Proceedings of the 3`d International Symposium on Electromagnetic Processing of Materials, April 3–6, 2000, Nagoya, Japan; The Iron and Steel Institute of Japan.Google Scholar
  3. Binns K.J.; P.J. Lawrenson; C.W. Trowbridge 1992: The Analytical and Numerical Solution of Electric and Magnetic Fields, John Wiley and Sons Ltd.Google Scholar
  4. Biskamp, D., 1993: Nonlinear Magnetohydrodynamics, Cambridge University Press.Google Scholar
  5. Biskamp, D.; W. C. Müller, 1999: Decay laws for three-dimensional MHD turbulence, Phys. Rev. Lett., vol. 83 (11), pp. 2195–2198.CrossRefGoogle Scholar
  6. Crawford C.H., G.E. Karniadakis 1997: Reynolds stress analysis of EMHD-controlled wall turbulence. Phys. Fluids vol. 9, 788.Google Scholar
  7. Davidson P.A., RI. Lindsay 1998: Stability of interfacial waves in aluminium reduction cells, J. Fluid Mech, vol. 362, pp. 273–296.CrossRefMATHGoogle Scholar
  8. Davis, S. H., 1990: Hydrodynamic interactions in directional solidification J. Fluid Mech, vol. 212, pp. 241–262.MathSciNetCrossRefGoogle Scholar
  9. Davis, S. H.; H. E. Ripped; U. Müller; M. G. Worster (Eds.), 1992: Interactive Dynamics of Convection and Solidification, NATO ASI Series, vol. 219, Kluwer Academie Publishers, Dordrecht.Google Scholar
  10. Egry, I.; Szekely J., 1991: The measurement of thermophysical properties in microgravity using electromagnetic levitation, Adv. Space Res., vol. 11 (7), pp. 263–266.CrossRefGoogle Scholar
  11. Felten F., Y. Fautrelle, Y. Du Terrail, O. Metais 1999: Numerical modeling of electromagnetically driven flows using LES methods, in: Fluid Flow Phenomena in Metals Processing, Eds. N. El-Kaddah, D.G.C. Robertson, S.T. Johansen, V.R. Voller, The Minerals, Metals and Materials Society, pp. 571–579.Google Scholar
  12. Friedrich J., Y.-S. Lee, B. Fischer, C. Kupfer, G. Müller 1999: Experimental and numerical study of Rayleigh-Benard convection affected by a rotating magnetic field, Phys. Fluids vol. 11, 853.Google Scholar
  13. Galperin B., S.A. Orszag (Eds.) 1993: Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press.Google Scholar
  14. Gamier M. (Ed.) 1997: Proceedings of the 2nd International Congress on Electromagnetic Processing of Materials, Paris 27–29 May 1997.Google Scholar
  15. Glatzmeier, G.; P. H. Roberts, 1995: Nature, vol. 377, pp. 203.CrossRefGoogle Scholar
  16. Hossain M. 1994: Reduction in the dimensionality of turbulence due to a strong rotation, Phys. Fluids, vol. 6, pp. 1077–1080.CrossRefMATHGoogle Scholar
  17. Incropera, F. P.; D. P. DeWitt, 1996: Fundamentals of Heat and Mass Transfer, John Wiley and Sons. New York.Google Scholar
  18. Jackson, J. D, 1962: Classical Electrodynamics, John Wiley and Sons, New York.Google Scholar
  19. Kaiser, T.; K. W. Benz, 1998: Taylor vortex instabilities induced by a rotating magnetic field: A numerical approach. Phys. Fluids, vol. 10, 1104.Google Scholar
  20. Kolesnikov Y.B., A.B. Tsinober 1974: Izv. Akad. Nauk SSSR - Mech Zhid I Gaza, vol 4, 146.Google Scholar
  21. Landau, L. D.; E. M. Lifshitz, 1987: Fluid Mechanics, Course of Theoretical Physics, vol. 6, Pergamon Press.Google Scholar
  22. Mahesh, K.; Moin, P., 1998: DNS: A tool in turbulence research, Annu. Rev. Fluid Mech. vol. 30, pp. 539–578.MathSciNetCrossRefGoogle Scholar
  23. Martin-Witkowski, L. M.; Ph. Marty, 1998: Effect of a rotating magnetic field of arbitrary frequency on a liquid metal column. Eur. I. Mech. B/Fluids, vol. 17, 239.Google Scholar
  24. Meir, A. J.; P. G. Schmidt, 1994: A velocity–current formulation for stationary MHD flow, Appl. Math. Comp., vol. 65, pp. 95–109.MathSciNetMATHGoogle Scholar
  25. Moffatt H.K. 1967: On the suppression of turbulence by a uniform magnetic field, J. Fluid Mech, vol. 28, pp. 571–592.CrossRefGoogle Scholar
  26. Muizhnieks A.R., A.T. Yakovich 1988: Numerical study of closed axisymmetric MHD rotation in an axial magnetic field with mechanical interaction of azimuthal and meridional flows, Magnetohydrodynamics, vol. 24, pp. 50–55.Google Scholar
  27. Oughton, S.; E. R. Priest; W. H. Matthaeus, 1994: The influence of a mean magnetic field on three-dimensional MHD turbulence, J. Fluid Mech., vol. 280, pp. 95–117.CrossRefMATHGoogle Scholar
  28. Rosensweig, R E., 1985: Ferrohydrodynamics, Cambridge University Press.Google Scholar
  29. Scardovelli, R.; S. Zaleski, 1999: Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., vol. 31, pp. 567–603.MathSciNetCrossRefGoogle Scholar
  30. Schumann U. 1976: Numerical simulation of the transition from three- to two-dimensional turbulence under a uniform magnetic field, J. Fluid Mech, vol. 74, pp. 31–58.CrossRefMATHGoogle Scholar
  31. Tacke K.H.; K. Schwerdtfeger 1979: Stirring velocities in continuously cast round billets as induced by rotating electromagnetic fields, Stahl und Eisen, vol. 99, pp. 7–12.Google Scholar
  32. Vlasyuk V.K.; V.I. Sharamkin 1987: Effect of vertical magnetic field on heat and mass transfer in a parabolic liquid metal bath, Magnetohydrodynamics, vol. 23, pp. 211–216.Google Scholar
  33. Widlund O., S. Zahrai, F. Bark 1998: Development of a Reynolds stress closure for modeling of homogeneous MHD turbulence, Phys. Fluids, vol. 10, 1987.Google Scholar
  34. Wilcox D.O 1998: Turbulence modeling for CFD, DCW Industries.Google Scholar
  35. Zikanov, O.; A. Thess, 1999: Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number, J. Fluid Mech., vol. 358, pp. 299–333.CrossRefGoogle Scholar
  36. Zikanov O., D. Ziegler, P.A. Davidson, A. Thess 2000: Metall Trans. (in press).Google Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • André Thess
    • 1
  • Dietmar Schulze
    • 2
  1. 1.Department of Mechanical EngineeringIlmenau University of TechnologyIlmenauGermany
  2. 2.Department of Electrical EngineeringIlmenau University of TechnologyIlmenauGermany

Personalised recommendations