Skip to main content

Computational Magnetohydrodynamics Part I — Fundamentals

  • Chapter
  • 558 Accesses

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 418))

Abstract

Computational Magnetohydrodynamics (CMHD) is the science of numerically solving the coupled set of equations of fluid dynamics and electrodynamics occasionally supplemented by mathematical models for phase transitions including solidification, melting, evaporation and condensation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Mai S. (Ed.) 1994: Proceedings of the First International Congress on Electromagnetic Processing of Materials, Nagoya 25–28 October 1994.

    Google Scholar 

  • Mai, S. (Ed.), 2000: Proceedings of the 3`d International Symposium on Electromagnetic Processing of Materials, April 3–6, 2000, Nagoya, Japan; The Iron and Steel Institute of Japan.

    Google Scholar 

  • Binns K.J.; P.J. Lawrenson; C.W. Trowbridge 1992: The Analytical and Numerical Solution of Electric and Magnetic Fields, John Wiley and Sons Ltd.

    Google Scholar 

  • Biskamp, D., 1993: Nonlinear Magnetohydrodynamics, Cambridge University Press.

    Google Scholar 

  • Biskamp, D.; W. C. Müller, 1999: Decay laws for three-dimensional MHD turbulence, Phys. Rev. Lett., vol. 83 (11), pp. 2195–2198.

    Article  Google Scholar 

  • Crawford C.H., G.E. Karniadakis 1997: Reynolds stress analysis of EMHD-controlled wall turbulence. Phys. Fluids vol. 9, 788.

    Google Scholar 

  • Davidson P.A., RI. Lindsay 1998: Stability of interfacial waves in aluminium reduction cells, J. Fluid Mech, vol. 362, pp. 273–296.

    Article  MATH  Google Scholar 

  • Davis, S. H., 1990: Hydrodynamic interactions in directional solidification J. Fluid Mech, vol. 212, pp. 241–262.

    Article  MathSciNet  Google Scholar 

  • Davis, S. H.; H. E. Ripped; U. Müller; M. G. Worster (Eds.), 1992: Interactive Dynamics of Convection and Solidification, NATO ASI Series, vol. 219, Kluwer Academie Publishers, Dordrecht.

    Google Scholar 

  • Egry, I.; Szekely J., 1991: The measurement of thermophysical properties in microgravity using electromagnetic levitation, Adv. Space Res., vol. 11 (7), pp. 263–266.

    Article  Google Scholar 

  • Felten F., Y. Fautrelle, Y. Du Terrail, O. Metais 1999: Numerical modeling of electromagnetically driven flows using LES methods, in: Fluid Flow Phenomena in Metals Processing, Eds. N. El-Kaddah, D.G.C. Robertson, S.T. Johansen, V.R. Voller, The Minerals, Metals and Materials Society, pp. 571–579.

    Google Scholar 

  • Friedrich J., Y.-S. Lee, B. Fischer, C. Kupfer, G. Müller 1999: Experimental and numerical study of Rayleigh-Benard convection affected by a rotating magnetic field, Phys. Fluids vol. 11, 853.

    Google Scholar 

  • Galperin B., S.A. Orszag (Eds.) 1993: Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press.

    Google Scholar 

  • Gamier M. (Ed.) 1997: Proceedings of the 2nd International Congress on Electromagnetic Processing of Materials, Paris 27–29 May 1997.

    Google Scholar 

  • Glatzmeier, G.; P. H. Roberts, 1995: Nature, vol. 377, pp. 203.

    Article  Google Scholar 

  • Hossain M. 1994: Reduction in the dimensionality of turbulence due to a strong rotation, Phys. Fluids, vol. 6, pp. 1077–1080.

    Article  MATH  Google Scholar 

  • Incropera, F. P.; D. P. DeWitt, 1996: Fundamentals of Heat and Mass Transfer, John Wiley and Sons. New York.

    Google Scholar 

  • Jackson, J. D, 1962: Classical Electrodynamics, John Wiley and Sons, New York.

    Google Scholar 

  • Kaiser, T.; K. W. Benz, 1998: Taylor vortex instabilities induced by a rotating magnetic field: A numerical approach. Phys. Fluids, vol. 10, 1104.

    Google Scholar 

  • Kolesnikov Y.B., A.B. Tsinober 1974: Izv. Akad. Nauk SSSR - Mech Zhid I Gaza, vol 4, 146.

    Google Scholar 

  • Landau, L. D.; E. M. Lifshitz, 1987: Fluid Mechanics, Course of Theoretical Physics, vol. 6, Pergamon Press.

    Google Scholar 

  • Mahesh, K.; Moin, P., 1998: DNS: A tool in turbulence research, Annu. Rev. Fluid Mech. vol. 30, pp. 539–578.

    Article  MathSciNet  Google Scholar 

  • Martin-Witkowski, L. M.; Ph. Marty, 1998: Effect of a rotating magnetic field of arbitrary frequency on a liquid metal column. Eur. I. Mech. B/Fluids, vol. 17, 239.

    Google Scholar 

  • Meir, A. J.; P. G. Schmidt, 1994: A velocity–current formulation for stationary MHD flow, Appl. Math. Comp., vol. 65, pp. 95–109.

    MathSciNet  MATH  Google Scholar 

  • Moffatt H.K. 1967: On the suppression of turbulence by a uniform magnetic field, J. Fluid Mech, vol. 28, pp. 571–592.

    Article  Google Scholar 

  • Muizhnieks A.R., A.T. Yakovich 1988: Numerical study of closed axisymmetric MHD rotation in an axial magnetic field with mechanical interaction of azimuthal and meridional flows, Magnetohydrodynamics, vol. 24, pp. 50–55.

    Google Scholar 

  • Oughton, S.; E. R. Priest; W. H. Matthaeus, 1994: The influence of a mean magnetic field on three-dimensional MHD turbulence, J. Fluid Mech., vol. 280, pp. 95–117.

    Article  MATH  Google Scholar 

  • Rosensweig, R E., 1985: Ferrohydrodynamics, Cambridge University Press.

    Google Scholar 

  • Scardovelli, R.; S. Zaleski, 1999: Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., vol. 31, pp. 567–603.

    Article  MathSciNet  Google Scholar 

  • Schumann U. 1976: Numerical simulation of the transition from three- to two-dimensional turbulence under a uniform magnetic field, J. Fluid Mech, vol. 74, pp. 31–58.

    Article  MATH  Google Scholar 

  • Tacke K.H.; K. Schwerdtfeger 1979: Stirring velocities in continuously cast round billets as induced by rotating electromagnetic fields, Stahl und Eisen, vol. 99, pp. 7–12.

    Google Scholar 

  • Vlasyuk V.K.; V.I. Sharamkin 1987: Effect of vertical magnetic field on heat and mass transfer in a parabolic liquid metal bath, Magnetohydrodynamics, vol. 23, pp. 211–216.

    Google Scholar 

  • Widlund O., S. Zahrai, F. Bark 1998: Development of a Reynolds stress closure for modeling of homogeneous MHD turbulence, Phys. Fluids, vol. 10, 1987.

    Google Scholar 

  • Wilcox D.O 1998: Turbulence modeling for CFD, DCW Industries.

    Google Scholar 

  • Zikanov, O.; A. Thess, 1999: Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number, J. Fluid Mech., vol. 358, pp. 299–333.

    Article  Google Scholar 

  • Zikanov O., D. Ziegler, P.A. Davidson, A. Thess 2000: Metall Trans. (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this chapter

Cite this chapter

Thess, A., Schulze, D. (2002). Computational Magnetohydrodynamics Part I — Fundamentals. In: Davidson, P.A., Thess, A. (eds) Magnetohydrodynamics. International Centre for Mechanical Sciences, vol 418. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2546-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2546-5_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83686-6

  • Online ISBN: 978-3-7091-2546-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics