Liquid Metal Magneto-Hydraulics Flows in Ducts and Cavities

  • U. Müller
  • L. Bühler
Part of the International Centre for Mechanical Sciences book series (CISM, volume 418)


This contribution gives an overview on liquid metal flow in engineering applications such as duct flows in various geometries and buoyant flows in cavities. Early results, some of them may be termed classical, are presented as well as results obtained in recent years. It is not the aim to give a complete overview but to introduce the reader to fascinating subject of liquid metal magnetohydrodynamics.


Shear Layer Lorentz Force Pressure Loss Channel Wall Hartmann Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albousiére, T., Garandet, J., and Moreau, R. (1993). Buoyancy-driven convection with a uniform magnetic field. part 1. asymptotic analysis. Journal of Fluid Mechanics 253: 545–563.CrossRefGoogle Scholar
  2. Alboussiére, T., Neubrand, A. C., Garandet, J. P., and Moreau, R. (1995). Magnetic field and segregation duringBridgeman growth. Magnetohydrodynamics 31: 228–235.Google Scholar
  3. Alboussière, T., Garandet, J. P., and Moreau, R. (1996). Asymptotic analysis and symmetry in MHD convection. Physics of Fluids 8 (8): 2215–2226.MathSciNetCrossRefMATHGoogle Scholar
  4. Alboussière, T., Neubrand, A. C., Garandet, J. P., and Moreau, R. (1997). Segregation during horizontal Bridgeman growth under an axial magnetic field. Journal of Crystal Growth 181: 133–144.CrossRefGoogle Scholar
  5. Alty, C. J. N. (1971). Magnetohydrodynamic duct flow in a uniform transverse magnetic field of arbitrary orientation. Journal of Fluid Mechanics 48: 429–461.CrossRefGoogle Scholar
  6. Barleon, L., Lenhart, L., Mack, H. J., Sterl, A., and Thomauske, K. (1989). Investigations on liquid metal MHD in straight ducts at high Hartmann numbers and interaction parameters. In Müller, U., Rehme, K., and Rust, K., eds., Proceedings of the 4th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe, October 10–13. G. Braun, Karlsruhe. 857–862.Google Scholar
  7. Barleon, L., Mack, K. J., Kirchner, R., Frank, M., and Stieglitz, R. (1995). MHD heat transfer and pressure drop in electrically insulated channels at fusion relevant parameters. In Herschbach, K., Maurer, W., and Vetter, J. E., eds., Fusion Technology 1994. Elsevier. 1201–1204.Google Scholar
  8. Ben Hadid, H., and Henri, D. (1997). Numerical study of convection in a horizontal Bridgeman configuration under the action of a constant magnetic field. Part 2. three-dimensional flow. Journal of Fluid Mechanics 333: 57–83.CrossRefMATHGoogle Scholar
  9. Blúms, E., Mikhailov, Y., and Ozols, R. (1987). Heat and mass transfer in MHD flows. World Scientific Publishing Co. Pte. Ltd.Google Scholar
  10. Branover, H., Vasil’ev, H., and Gelfgat, Y. (1967). Hydraulic resistance of MHD pipes. Magnitnaya Gidrodynamica 4 (3): 1.Google Scholar
  11. Branover, H. (1978). Magnetohydrodynamic flow in ducts. John Wiley & Sons, New York, Toronto.Google Scholar
  12. Bühler, L. (1994). Magnetohydrodynamic flows in arbitrary geometries in strong, nonuniform magnetic fields.-a numerical code for the design of fusion reactor blankets. Fusion Technology 27: 3–24.Google Scholar
  13. Bühler, L. (1996). Instabilities in quasi-two-dimensional magnetohydrodynamic flows. Journal of Fluid Mechanics 326: 125–150.CrossRefMATHGoogle Scholar
  14. Bühler, L. (1998). Laminar buoyant magnetohydrodynamic flow in vertical rectangular ducts. Physics of Fluids 10 (1): 223–236.CrossRefGoogle Scholar
  15. Burr, U., Barleon, L., Mack, K.-J., and Müller, U. (1999a). The effect of a horizontal magnetic field on liquid metal rayleigh-bénard convection. Technical Report FZKA 6277, Forschungszentrum Karlsruhe.Google Scholar
  16. Burr, U., Barleon, L., Mack, K.-J., and Müller, U. (1999b). The effect of a vertical magnetic field on liquid metal rayleigh-bénard convection. Technical Report FZKA 6267, Forschungszentrum Karlsruhe.Google Scholar
  17. Chandrasekhar, S. (1961). Hydrodynamic and hydromagnetic stability. New York: Dover Publications, Inc.Google Scholar
  18. Chang, C., and Lundgren, S. (1961). Duct flow in magnetohydrodynamics. Zeitschrift für angewandte Mathematik und Physik XII: 100–114.MathSciNetCrossRefGoogle Scholar
  19. Debray, F. (1997). Measurement of the onset of MHD-turbulence caused by a step in the electrical conductivity in the channel walls of GALINKA Il and comparison with theoretical models. Technical Report FZKA 5972, Forschungszentrum Karlsruhe.Google Scholar
  20. Frank, M., Barleon, L., and Müller, U. (1997). Experimentelle Untersuchung zweidimensionaler MHD-Turbulenz. Technical Report FZKA 6021, Forschungszentrum Karlsruhe. Diplomarbeit.Google Scholar
  21. Garandet, J., Albousière, T., and Moreau, R. (1992). Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int. J. Heat Mass Transfer 35 (4): 741–748.CrossRefMATHGoogle Scholar
  22. Gold, R. R. (1962). Magnetohydrodynamic pipe flow. Part 1. Journal of Fluid Mechanics 13: 505–512.MathSciNetCrossRefMATHGoogle Scholar
  23. Hartmann, J. (1937). Hg-Dynamics I Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Det Kgl. Danske Videnskabernes Selskab. Mathematisk-fysiske Meddelelser XV (6): 1–27.Google Scholar
  24. Huges, W. F., and Young, F. J. (1966). The electromagnetics. John Wiley & Sons Inc.Google Scholar
  25. Hunt, J. C. R., and Leibovich, S. (1967). Magnetohydrodynamic flow in channels of variable cross-section with strong transverse magnetic fields. Journal of Fluid Mechanics 28 (Part 2): 241–260.CrossRefMATHGoogle Scholar
  26. Hunt, J. C. R., and Stewartson, K. (1965). Magnetohydrodynamic flow in rectangular ducts. Journal of Fluid Mechanics 23: 563–581.MathSciNetCrossRefGoogle Scholar
  27. Hunt, J. C. R., and Williams, W. E. (1968). Some electically driven flows in magnetohydrodynamics. Part 1. Theory. Journal of Fluid Mechanics 31 (4): 705–722.CrossRefMATHGoogle Scholar
  28. Hunt, J. C. R. (1965). Magnetohydrodynamic flow in rectangular ducts. Journal of Fluid Mechanics 21: 577–590.MathSciNetCrossRefMATHGoogle Scholar
  29. Khine, Y., and Walker, J. (1998). Thermoelectric magnetohydrodynamic effects during bridgman semicon- ductor crystal growth with a uniform axial magnetic field. Journal of Crystal Growth 183: 159–158.CrossRefGoogle Scholar
  30. Lenhart, L., and McCarthy, K. (1991). Comparison of the core flow solution and the full solution for MHD flow. In Proceedings of the Sixth Beer-Sheva International Seminar on MHD Flows and Turbulence, Jerusalem, 1990. American Institute of Aeronautics and Astronautics, Inc. 482–499. Beer-Sheva.Google Scholar
  31. Ludford, G. S. S. (1960). The effect of a very strong magnetic cross-field on steady motion through a slightly conducting fluid. Journal of Fluid Mechanics 10: 141–155.MathSciNetCrossRefGoogle Scholar
  32. Lykoudis, P. S. (1996). Natural convection in a cubic enclosure in the presence of a horizontal magnetic field. Journal of Heat Transfer 118: 215–218.CrossRefGoogle Scholar
  33. Ma, N., and Walker, J. S. (1995). Liquid-metal buoyant convection in a vertical cylinder with a strong vertical magnetic field and with nonaxisymmetric temperature. Physics of Fluids 7 (8): 2061–2071.CrossRefMATHGoogle Scholar
  34. Ma, N., and Walker, J. S. (1996). Buoyant convection during the growth of compound semiconductors by the liquid-encapsulated Czochralski process with an axial magnetic field and with non-axisymmetric temperature. Journal of Fluids Engineering 118 (8): 155–159.CrossRefGoogle Scholar
  35. Molokov, S., and Bühler, L. (1994). Liquid metal flow in a U-bend in a strong uniform magnetic field. Journal of Fluid Mechanics 267: 325–352.CrossRefMATHGoogle Scholar
  36. Molokov, S. (1993). Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field. European Journal of Mechanics, B/Fluids 12 (6): 769–787.MATHGoogle Scholar
  37. Molokov, S. (1994). Liquid metal flows in manifolds and expansions of insulating rectangular ducts in the plane perpendicular to a strong magnetic field. Technical Report KfK 5272, Kernforschungszentrum Karlsruhe.Google Scholar
  38. Moon, T. J., Hua, T. Q., and Walker, J. S. (1991). Liquid-metal flow in a backward elbow in the plane of a strong magnetic field. Journal of Fluid Mechanics 227: 273–292.CrossRefMATHGoogle Scholar
  39. Moreau, R. (1990). Magnetohydrodynamics. Kluwer Academic Publisher.Google Scholar
  40. Mößner, R. (1996). Dreidimensionale numerische Simulation von Naturkonvektionsströmungen unter dem Einfluß von Magnetfeldern. Technical Report FZKA 5748, Forschungszentrum Karlsruhe.Google Scholar
  41. Murgatroyd, W. (1953). Experiments on magneto-hydrodynamic channel flow. Phil. Mag. 44: 1348–1354.Google Scholar
  42. Okada, K., and Ozoe, H. (1992). Experimental heat transfer rates of natural convcection of molten gallium suppressed under an external magnetic field in either the x, y, or z direction. Journal of Heat Transfer 114: 107–114.CrossRefGoogle Scholar
  43. Reed, C. B., Picologlou, B. E, Hua, T. Q., and Walker, J. S. (1987). Alex results–A comparison of measurements from a round and a rectangular duct with 3-D code predictions. In IEEE 12th Symposium on Fusion Engineering, Monterey, California, October 13–16. 1267–1270.Google Scholar
  44. Roberts, P. H. (1967). Singularities of Hartmann layers. Proceedings of the Royal Society of London 300 (A): 94–107.CrossRefMATHGoogle Scholar
  45. Rosant, M. (1976). Ecoulements hydromagnétiques turbulents en conduites rectangulaires. Ph.D. Dissertation, Grenoble. see Moreau (1990), p149.Google Scholar
  46. Series, R. W., and Hurle, D. T. J. (1991). The use of magnetic fields in semiconductor crystal growth. Journal of Crystal Growth 113: 305–321.CrossRefGoogle Scholar
  47. Shercliff, J. A. (1953). Proc.Camb.Phil.Soc. 49: 136.MathSciNetCrossRefMATHGoogle Scholar
  48. Shercliff, J. A. (1962). Magnetohydrodynamic pipe flow Part 2. High Hartmann number. Journal of Fluid Mechanics 13: 513–518.MathSciNetCrossRefMATHGoogle Scholar
  49. Sterl, A. (1990). Numerical simulation of liquid-metal MHD flows in rectangular ducts. Journal of Fluid Mechanics 216: 161–191.CrossRefMATHGoogle Scholar
  50. Stieglitz, R., and Molokov, S. (1997). Experimental study of magnetohydrodynamic flows in electrically coupled bends. Journal of Fluid Mechanics 343: 1–28.CrossRefGoogle Scholar
  51. Stieglitz, R., Barleon, L., Bühler, L., and Molokov, S. (1996). Magnetohydrodynamic flow through a right-angle bend in a strong magnetic field. Journal of Fluid Mechanics 326: 91–123.CrossRefMATHGoogle Scholar
  52. Tabeling, P. (1982). Magnetohydrodynamic flows in rectilinear ducts of rectangular cross-section: the question of the corners. Journal de Mécanique Théoretique et Appliquée 1 (1): 25–38.MathSciNetMATHGoogle Scholar
  53. Temperley, D. J., and Todd, L. (1971). The effect of wall conductivity in magnetohydrodynamic duct flow at high Hartmann number. Proc. Camb. Phil. Soc. 69: 337–351.CrossRefMATHGoogle Scholar
  54. Ufland, Y. S. (1961). Hartman problem for a circular tube. Soviet Physics Technical Physics 5: 1194–1196.Google Scholar
  55. Walker, J. S. (1981). Magnetohydrodynamic flows in rectangular ducts with thin conducting walls. Journal de Mécanique 20 (1): 79–112.MATHGoogle Scholar
  56. Walker, J. (1998). Bridgman crystal growth with a strong, low-frequency, rotating magnetic field. Journal of Crystal Growth 192: 318–327.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • U. Müller
    • 1
  • L. Bühler
    • 1
  1. 1.Forschungszentrum KarlsruheGermany

Personalised recommendations