Fatigue of Composite Materials

  • Ramesh Talreja
Part of the International Centre for Mechanical Sciences book series (CISM, volume 448)


This chapter summarizes part of the six lectures, pertaining to fatigue of composite materials, presented at the session, “Modern Trends in Composite Laminates Mechanics” at CISM in Udine. The summary provided here is of introductory nature aimed at a reader who is not an expert in the subject. Ample references are given to help the reader pursue the subject further.


Fatigue Life Fatigue Damage Fatigue Limit Matrix Crack Polymer Matrix Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akshantala, N.V., and Talreja, R. (2000). A Micromechanics Based Model for Predicting Fatigue Life of Composite Laminates. Materials Science and Engineering A285: 303–313.CrossRefGoogle Scholar
  2. Akshantala, N. V., and Talreja, R. (1998). A Mechanistic Model for Fatigue Damage Evolution in Composite Laminates. Mechanics of Materials 29: 123–140.CrossRefGoogle Scholar
  3. Dharan, C.K.H. (1975). Fatigue Failure Mechanisms in a Unidirectionally Reinforced Composite Material. In Fatigue of Composite Materials, ASTM STP 569, Philadelphia: American Society for Testing and Materials, 171–188.Google Scholar
  4. Daniels, H.E. (1945). Proc. R. Soc. Lond. A183: 405–435.CrossRefMATHMathSciNetGoogle Scholar
  5. Gamstedt, E.K., Berglund, L.A., and Peijs, T. (1998). Influence of interfacial strength on micro-and macroscopic behavior of longitudinal glass fiber reinforced polypropylene. In K.L. Reifsnider, D.A. Dillard, and A.H. Cardon, eds., Progress in Durability Analysis of Composite Systems. Rotterdam: A.A. Balkema, 137–142.Google Scholar
  6. Gamstedt, E.K., and Talreja, R. (1999). Fatigue Damage Mechanisms in Unidirectional Carbon-Fibre-reinforced Plastics. Journal of Materials Science 34: 2535–2546.CrossRefGoogle Scholar
  7. Hanaff-Gardin, C., Goupillaud, I., and Lafarie-Frenot, M.C. (2000). Evolution of matrix cacking in cross-ply CFRP laminates: Differences between mechanical and thermal loadings. In A.H. Cardon, H. Fukuda, K.L. Reifsnider, and G. Verchery, eds., Developments in Durability Analysis of Composite Systems. Rotterdam: A.A. Balkema, 69–76.Google Scholar
  8. Nairn, J.A., and Hu, S. (1994). Matrix Microcracking. In R. Talreja, ed., Damage Mechanics of Composite Materials. Amsterdam: Elsevier Science, 187–243.Google Scholar
  9. Rosen, B.W. (1962). AIAA Journal 2: 1985–1991.CrossRefGoogle Scholar
  10. Talreja, R. (1981). Fatigue of Composite Materials: Damage Mechanisms and Fatigue Life Diagrams Proc. R. Soc. Lond. A378: 461–475.Google Scholar
  11. Talreja, R. (1985). Transverse Cracking and Stiffness Reduction in Composite Laminates. J. Comp. Mats 19: 355–375.Google Scholar
  12. Talreja, R. (1993). Fatigue of Fiber Composites. In T.W. Chou, ed., Materials Science and Technology, Chapter 13, Weinheim: VCH, 584–607.Google Scholar
  13. Talreja, R. (1995). A Cenceptual Framework for Interpretation of MMC Fatigue. Materials Science and Engineering A200: 21–28.CrossRefGoogle Scholar
  14. Talreja, R. (2000). Fatigue of Polymer Matrix Composites. In R. Talreja and J.-A.E. Wilson, eds., A. Kelly and C. Zweben, Series eds., Comperehensive Composite Materials, Vol. 2, Oxford: Elsevier, 529–552.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Ramesh Talreja
    • 1
  1. 1.Department of Aerospace EngineeringTexas A&M UniversityUSA

Personalised recommendations