Identification of Mechanical Properties of Laminates

  • Rolands Rikards
Part of the International Centre for Mechanical Sciences book series (CISM, volume 448)


Identification of elastic and damage properties of composite laminates is discussed. Identification functional describes the differences between measured and numerically calculated vibration characteristics of laminated plates. Identification parameters are elastic constants and damage properties of laminates. Minimization of identification functional is performed employing the method of experimental design and response surface approach. Global and local approximation methods have been discussed. Results of identification obtained from vibration tests have been compared with the results obtained by conventional static tests. Good agreement of the results obtained by both methods is observed. It can be concluded that method of experimental design and response surface approach is a powerful tool for identification of mechanical properties of composites.


Response Surface Elastic Constant Mode Shape Laminate Plate Multivariate Adaptive Regression Spline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altenbach, H., Altenbach, J., Rikards, R. (1996). Einfürung in die Mechanik der Laminatund Sandwichtragwerke: Modellierung und Berechnung von Balken und Platten aus Verbundwerkstoffen. Stuttgart: Deutscher Verlag für Grundstoffindustrie.Google Scholar
  2. Audze, P. and Eglais, V. (1977). New approach to planning out of experiments. In: Problems of Dynamics and Strength. Vol.35, E. Lavendel, ed., Zinatne, Riga, pp. 104–107 (in Russian).Google Scholar
  3. Auzins, J., Janushevskis, A. and Onzevs, O. (1999). Optimization of Multibody Vibration Response by Global Search Procedure,. In: Proceedings of ECCM 99, European Conference on Computational Mechanics, CD-ROM, Munich, Germany, p. 17.Google Scholar
  4. Auzins, J and Janushevskis, A. (2002). New Experimental Designs for Metamodelling and Optimization. In: Proceedings of WCCM V, Fifth World Congress on Computational Mechanics, July 7–12, 2002, Vienna, Austria, CD-ROM edition, pp. 1–10.Google Scholar
  5. Barthelemy, J.-F. M. and Haftka, R. T. (1993). Approximation concepts for optimum structural design–review. Structural Optimization 5: 129–144.CrossRefGoogle Scholar
  6. Bathe, K.-J. (1982). Finite Element Procedures in Engineering Analysis, Englewood Cliffs: P rent ice-Hall.Google Scholar
  7. Bledzki, A. K., Kessler, A., Rikards, R. and Chate A. (1999). Determination of elastic constants of glass/epoxy unidirectional laminates by the vibration testing of plates. Composites Science é4 Technology 59: 2015–2024.CrossRefGoogle Scholar
  8. Bolognini, L., Riccio, F., and Bettianli, F. (1993). A modal technique for the identification of stiffness and mass pa: ameters in large structures. In: Computational Methods and Experimental Measurements VI, Vol. 2: Stress Analysis, C.A. Brebbia and G.M. Carlomagno, eds., Elsevier Applied Science, London-New York, pp. 337–352.Google Scholar
  9. Box, G. E. P. and Draper, N. R. (1987). Empirical Model-Building and Response Surfaces, New York: Wiley.MATHGoogle Scholar
  10. Chakraborty, S. and Mukhopadhyay, M. (2000). Estimation of In-Plane Elastic Parameters and Stiffener Geometry of Stiffened Plates. J. Sound and Vibration 231 (1): 99–124.CrossRefGoogle Scholar
  11. Cleveland, W. S. and Devlin, S. J. (2000). Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association 83: 596–610.CrossRefGoogle Scholar
  12. Currin, C., Mitchell, T., Morris, D. and Ylvisaker, D. (1991). Bayesian Prediction of Deterministic Functions with Applications to the Design and Analysis of Computer Experiments. Journal of the American Statistical Association 86: 953–963.CrossRefMathSciNetGoogle Scholar
  13. De Visscher, J., Sol, H., De Wilde, W. P., and Vantomme J. (1997). Identification of damping properties of orthotropic composite materials using a mixed numerical experimental method. Appl. Compos. Mater. 4 (1): 13–33.Google Scholar
  14. Doebling, S. W., Farrar, Ch. R., Prime, M. B. and Shevitz, D. W. (1996). Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. Report LA-13070-MS, Los Alamos National Laboratory, New Mexico.Google Scholar
  15. Dyn, N., Levin, D. and Rippa, S. (1986). Numerical Procedures for Surface Fitting of Scattered Data by Radial Basis Functions. SIAM Journal of Scientific and Statistical Computing 7 (2): 639–659.CrossRefMATHMathSciNetGoogle Scholar
  16. Eglais, V. (1981). Approximation of data by multi-dimensional equation of regression. In: Problems of Dynamics and Strength. Vol. 39, E. Lavendel ed., Zinatne, Riga, pp. 120–125 (in Russian).Google Scholar
  17. Fang, K.-T. and Wang, Y. (1994). Number-Theoretic Methods in Statistics. London: Chapman and Hall.CrossRefMATHGoogle Scholar
  18. Fang, K. T., Shiu, W.C. and Pan, J.X. (1999). Uniform Designs Based on Latin Squares Statistica Sinica 9: 905–912.MATHMathSciNetGoogle Scholar
  19. Frederiksen, P. S. (1997a). Experimental procedure and results for the identification of elastic constants of thick orthotropic plates. J. Compos. Mater. 31 (4): 360–382.CrossRefGoogle Scholar
  20. Frederiksen, P. S. (1997b). Application of an improved model for the identification of material parameters. Mech. Compos. Mater. and Struct. 4: 297–316.CrossRefGoogle Scholar
  21. Frederiksen, P. S. (1997c). Numerical studies for the identification of elastic constants of thick orthotropic laminates. Eur. J. Mech. A/Solids 16: 117–140.MATHGoogle Scholar
  22. Frederiksen, P. S. (1998). Parameter unsertainty and design of optimal experiments for the estimation of elastic constants. Int. J. Solids structures 35: 1241–1260.CrossRefMATHGoogle Scholar
  23. Friedman, J. H. (1998). Multivariate Adaptive Regression Splines. The Annals of Statistics 19 (1): 1–67.CrossRefGoogle Scholar
  24. Giunta, A. A., Dudley, J. M., Narducci, R., Grossman, B., Haftka, R. T., Mason, W. H. and Watson, L. T. (1994). Noisy Aerodynamic Response and Smooth Approximations in HSCT Design. In: Proceedings of the 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, FL, Sept. 1994, pp. 1117–1128.Google Scholar
  25. Grediac, M. and Vautrin, A. (1993). Mechanical characterization of anisotropic plates: experiments and results. Eur. J. Mech. A/Solids 12 (6): 819–838.Google Scholar
  26. Haftka, R. T., Scott, E. P. and Cruz, J. R. (1998). Optimization and experiments: A survey. Appl. Mech. Rev. 51 (7): 435–448.CrossRefGoogle Scholar
  27. Hardy, R. L. (1971). Multiquadratic Equations of Topography and Other Irregular Surfaces. J. Geophys. Res. 76: 1905–1915.CrossRefGoogle Scholar
  28. Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and Maximin Distance Designs. Journal of Statistical Planning and Inference 26 (2): 131–148.CrossRefMathSciNetGoogle Scholar
  29. Jones, R. M. (1975). Mechanics of Composite Materials. Tokyo: McGraw-Hill.Google Scholar
  30. Khuri A. I. and Cornell J. A. (1996). Response Surfaces: Designs and Analyses. New York: Marcel Dekker.MATHGoogle Scholar
  31. Knauss, W. (2000). Perspectives in experimental mechanics. Int. J. Solids Structures 37: 251–266.CrossRefMATHGoogle Scholar
  32. Koehler, J. R. and Owen, A. B. (1996). Computer Experiments. In: Handbook of Statistics, Ghosh, S. and Rao, C. R., eds., Elsevier Science, New York, 1996, pp. 261–308.Google Scholar
  33. McKay, M. D., Conover, W. J. and Beckman, R. J. (1979). A comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 21(2):239–245.Google Scholar
  34. Meyer, R. D., Steinberg D. M. and Box, G. (1995). Follow-Up Designs to Resolve Confounding in Multifactor Experiments. Technometrics 38: 303–313.CrossRefGoogle Scholar
  35. Morris, M. D. and Mitchell, T.J. (1995). Exploratory designs for computer experiments. Journal of Statistical Planning and Inference 43: 381–402.CrossRefMATHGoogle Scholar
  36. Palmer, K. and Tsui, K.-L. (2001). A Minimum Bias Latin Hypercube Design. IIE Transactions 33 (9): 793–816.Google Scholar
  37. Park, J.-S. (1994). Optimal Latin-Hypercube Designs for Computer Experiments. Journal of Statistical Planning and Inference 39 (1): 95–111.CrossRefMATHMathSciNetGoogle Scholar
  38. Pedersen, P. (1989). Optimization method applied to identification of material parameters. In: Discretization Methods and Structural Optimization–Procedures and applications, H. A. Eschenauer and G. Thierauf, eds., Springer Verlag, Berlin, pp. 277–283.CrossRefGoogle Scholar
  39. Powell, M. J. D. (1987). Radial Basis Functions for Multivariable Interpolation: A Review,. In: Algorithms for Approximation, Mason, J. C. and Cox, M. G., eds., Oxford University Press, London, 1987, pp. 143–167.Google Scholar
  40. Reddy, J. N. (1996). Mechanics of Laminated Composite Plates. Theory and Analysis. Boca Raton: CRC Press.Google Scholar
  41. Rikards, R., (1993). Elaboration of optimal design models for objects from data of experiments. In: Optimal Design with Advanced Materials. Proceedings of the IUTAM Symposium, Lyngby, Denmark, 18–20 August, 1992, P. Pedersen, ed., Elsevier Science Publishers, Amsterdam, pp. 148–162.Google Scholar
  42. Rikards, R. and Chate, A. (1995). Optimal design of sandwich and laminated composite plates based on planning of experiments. Structural Optimization 10 (1): 46–53.Google Scholar
  43. Rikards, R. and Chate, A. K. (1997). Vibration and Damping Analysis of Laminated Composite and Sandwich Shells. Mechanics of Composite Materials and Structures 4: 209–232.Google Scholar
  44. Rikards, R., Chate, A., Steinchen, W., Kessler, A., and Bledzki, A. K. (1999). Method for identification of elastic properties of laminates based on experiment design. Composites. Part B 30: 279–289.CrossRefGoogle Scholar
  45. Rikards, R., Chate, A. K. and Gailis, G. (2001). Identification of Elastic Properties of Laminates Based on xperiment Design. Int. Journal of Solids and Structures 38: 50975115.Google Scholar
  46. Roux, W. J., Stander, N. and Haftka, R. T. (1998). Response surface approximations for structural optimization. Int. J. Numer. Meth. Engng. 42: 517–534.CrossRefMATHGoogle Scholar
  47. Sacks, J., Schiller, S. B. and Welch, W. J. (1989a). Design of Computer Experiments. Technometrics 31: 41–47.CrossRefMathSciNetGoogle Scholar
  48. Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989b). Design and Analysis of Computer Experiments. Statistical Science 4 (4): 409–435.CrossRefMATHMathSciNetGoogle Scholar
  49. Salawu, O. S. (1997). Detection of structural damage through changes in frequency:A review. Engineering Structures 19: 718–723.CrossRefGoogle Scholar
  50. Shewry, M. and Wynn, H. (1987). Maximum Entropy Design. Journal of Applied Statistics 14 (2): 165–170.CrossRefGoogle Scholar
  51. Soares, M. C. M., Moreira de Freitas, M., and Araújo A. L. (1993). Identification of material properties of composite plate specimens. Composite Structures 25: 277–285.CrossRefGoogle Scholar
  52. Sol, H., De Visscher, J., and De Wilde, W. P. (1993). Identification of the viscoelastic material properties of orthotropic plates using a mixed numerical/experimental technique. In: Computational Methods and Experimental Measurements VI, Vol. 2: Stress Analysis, C.A. Brebbia and G.M. Carlomagno, eds., Elsevier Applied Science, London-New York, pp. 131–142.Google Scholar
  53. Tang, B. (1993). Orthogonal Array-Based Latin Hypercubes. Journal of the American Statistical Association 88 (424): 1392–1397.CrossRefMATHMathSciNetGoogle Scholar
  54. Toropov, V. V. (1989). Simulation approach to structural optimization. Structural Optimization 1: 37–46.CrossRefGoogle Scholar
  55. Toropov, V.V., Alvarez, L.F. (1998). Application of genetic programming and response surface methodology to optimization and inverse problems. In: Inverse Problems in Engineering Mechanics. Proc. Int. Symposium, Nagano City, Japan, March 24–27, 1998, M. Tanaka, G.S. and Dulikravich, eds., Elsevier, pp. 551–560.Google Scholar
  56. Ye, K. Q. (1998). Column Orthogonal Latin Hypercubes and their Application in Computer Experiments. Journal of American Statistical Association 93: 1430–1439.CrossRefMATHGoogle Scholar
  57. Zou, Y., Tong, L. and Steven, G. P. (2000). Vibration based model dependent damage (delamination) identification and health monitoring for composite structures–a review. J. Sound and Vibration 230 (2): 357–378.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Rolands Rikards
    • 1
  1. 1.Institute of Materials and StructuresRiga Technical UniversityLatvia

Personalised recommendations