Skip to main content

Element of Physiology and Mechanics of Human Arteries

  • Chapter
Book cover Cardiovascular Fluid Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 446))

Abstract

Some elements concerning the physiology and the corresponding mechanical properties of human arteries are introduced. The non-invasive ultrasound techniques developed to assess strain, distensibility and compliance and IMT, velocity and wall shear rate/stress distribution in arteries are introduced. Artery wall properties, and intima-media thickness (IMT) change with age and disease are discussed with the relation with artery wall function and structure and role in the genesis of atherosclerosis. In hypertension and with aging elastic arteries become stiffer (loss of distensibility and compliance), the degree of stiffening also varies along artery bifurcations and differs in elastic and muscular arteries. These variations give differences in intima-media thickness and sites of preference for atherosclerosis. Alterations in structure and composition of the arterial wall responsible for the loss of distensibility and compliance and the increase in intima-media thickness (IMT) in disease and aging. Reasons and effects are discussed.

Chapters 4 and 5, only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando, J., Ohtsuka, A., Katayama, Y. et al. (1994). Intracellular calcium response to directly applied mechanical shearing force in cultured vascular endothelial cells. Biorheology. 31: 57–68.

    Google Scholar 

  • Ando, J. Tsuboi, H., Korenaga, R., et al. (1996). Down-regulation of vascular adhesion molecule-1 by fluid shear stress in cultured mouse endothelial cells. Annuals of the New York Academy of Sciences 748: 148–157.

    Article  Google Scholar 

  • Barra J G, Armentano R L, Levenson J., et al. (1993). Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs. Circulation Research 73: 1040–1050.

    Article  Google Scholar 

  • Bots, M.,L., Hofman, A., Grobbee, D.E. (1997). Increased common carotid intima-media thickness. Adaptive response or a reflection of atherosclerosis? Findings from the Rotterdam study. Stroke 28: 2442–2447.

    Article  Google Scholar 

  • Boutouyrie, P., Laurent S., Girerd, X. et al. (1995). Common carotid artery stiffness and patterns of left ventricular hypertrophy in hypertensive patients. Hypertension 25: 651–659.

    Article  Google Scholar 

  • Brands, P.,J., Hoeks, A.,P.,G., Hofstra, L., Reneman, R.,S. (1995). A non-invasive method to estimate wall shear rate using. Ultrasound in Medicine and Biology 21: 171–185.

    Google Scholar 

  • Busse, R., Fleming, I. (1966). Endothelial dysfunction in atherosclerosis. Journal of Vascular Research 33: 181–194.

    Article  Google Scholar 

  • Busse, R., Fleming, I. (1998). Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors. Journal of Vascular Research 35: 73–84.

    Article  Google Scholar 

  • Chapell, D.,C., Varner, S.,E., Nerem, R., M., et al. (1998). Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circulation Research 82: 532–539.

    Google Scholar 

  • De Keulenaar, G.W., Chappell, D.C., Ishizaka N. et al. (1998). Oscillatory and steady laminar shear stress differentially affect human endothelial redox state. Circulation Research 82: 1094–1101.

    Article  Google Scholar 

  • Frangos, J.A., Eskin, S.G., McIntyre L.V., Ives, C.L. (1985). Flow effects on prostacyclin production by cultured human endothelial cells. Science 227: 1477–1479.

    Article  Google Scholar 

  • Gandley, R.E., McLaughin, M.K., Koole, T.J. et al. (1997). Contribution of chondroitin-dermatan sulfate-containing proteoglycans to the function of rat mesenteric arteries. American Journal of Physiology 42: H952 - H960.

    Google Scholar 

  • Girerd, X., Mourad, J-J., Acar, C., et al. (1994). Noninvasive measurement of medium-sized artery intima-media thickness in humans: in vitro validation. Journal of Vascular Research 31: 114–120.

    Google Scholar 

  • Glagov, S., Vito, R., Giddens, D.P, Zarins, C.,K. (1992) Microarchitecture and compostition of artery walls: relationships to location, diameter and the distribution of mechanical stress. Journal of Hypertension 10: 5101–5104

    Google Scholar 

  • Green, M.,A., Friedlander, R., Boltax, A.,J. et al. (1966). Distensibility of arteries in human hypertension. Proceedings Society of Experimental Biology in Medicine 121: 580–585.

    Google Scholar 

  • Greenwald, S.E., Berry, C.L. (1978). Static mechanical properties and chemical composition of the aorta of spontaneously hypertensive rats: a comparison with the effects of induced hypertension. Cardiovascular Research 12: 364–372.

    Article  Google Scholar 

  • Gribbin, B., Pickering, T.,G., Sleight, P., (1979). Arterial distensibility in normal and hypertensive man. Clinical Science 56: 413–417.

    Google Scholar 

  • Gribbin, B., Pickering, T.,G., Sleight, P., Peto, R. (1971). Effect of age and high blood pressure on baroreflex sensitivity in men. Circulation Research. 29: 424–431.

    Article  Google Scholar 

  • Harkness M.L.R., Harkness, R.D., McDonald, D.A. (1957). The collagend and elastin content of the arterial wall in the dog. Proceedings of the Royal Society 146B: 541–551.

    Article  Google Scholar 

  • Hayoz, D., Rutschmann, B., Perret, F. et al. (1992). Conduit artery compliance and distensibility are not necessarily reduced in hypertension. Hypertension 20: 1–6

    Article  Google Scholar 

  • Hoeks, A.,P.,G. (1993). Non-invasive study of the local mechanical arterial characteristics in humans. In: Safar M E, O’Rourke M F (eds). The arterial system in hypertension. The Netherlands: Kluwer Academic Publishers 119–134.

    Google Scholar 

  • Hoeks, A.,P.,S., Arts, T.,H.,J., Brands, P.,J., Reneman, R.,S. (1993). Comparison of the performance of the cross-correlation and Doppler autocorrelation technique to estimate the mean velocity of stimulated ultrasound signals. Ultrasound in Medicine and Biology 19: 727–740.

    Google Scholar 

  • Hoeks, A.,P.,G., Brands, P., J., Smeets, F.,A.,M., Reneman, R.,S. (1990). Assessment of the distensibility of superficial arteries. Ultrasound in Medicine and Biology 16: 121–128.

    Google Scholar 

  • Hoeks, A.,P.,G., Ruissen, C.,J., Hick, P., Reneman, R.,S. (1985). Transcutaneous detection of relative changes in artery diameter. Ultrasound in Medicine and Biology 11: 51–59.

    Google Scholar 

  • Hoeks, A.,P.,G., Willekes, C., Boutouyrie. P. et al. (1997). Automated detection of local artery wall thickness based on M-line signal processing. Ultrasound in Medicine and Biology 23: 1017–1023.

    Google Scholar 

  • Hokanson, D.,E., Mozersky, D.,J., Summer, D.,S., Strandness, D.,E., (1972). A phase locked echo-tracking system for recording arterial diameter changes in vivo. Journal of Applied Physiology 32: 728–733.

    Google Scholar 

  • Kamiya, A., Bukhari, R., Togawa, T. (1984). Adaptive regulation of wall shear stress optimizing vascular tree function. Bulletin of Mathematical Biology 46: 127–137.

    Google Scholar 

  • Kohn R R. (1977). Heart and cardiovascular system. In: Finch, C.E., Hayflick, L. (eds). Handbook of the biology of aging. New York: Van Nostrand Reinhold Company 281–317.

    Google Scholar 

  • Komet, L., Hoeks, A.P.G., Lambregts, J., Reneman, R.S. (1999). In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses. Artheriosclerosis, Thrombosis and Vascular Biology 19: 2933–2939.

    Article  Google Scholar 

  • Komet, L., Hoeks, A.P.G., Lambregts, J., Reneman, R.,S. (2000). Mean wall shear stress in the femoral arterial bifurcation is low and independent of age at rest. Journal of Vascular Research 37: 112–122.

    Google Scholar 

  • Komet, L. Lambregts, J., Hoeks, A.P.G., Reneman, R.S. (1998). Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. Artherioclerosis, Thrombosis and Vascular Biology 18: 1877–1884.

    Article  Google Scholar 

  • Ku, D.N., Giddens, D.P., Zarins, C.K., Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5: 293–302.

    Article  Google Scholar 

  • LaBarbera M. (1990). Principles of design of fluid transport systems in zoology. Science 249: 992–1000.

    Article  Google Scholar 

  • Laurent, S., Girerd, X., Mourad, J-J. et al. (1994). Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension. Arteriosclerosis and Thrombosis 14: 1223–1231.

    Article  Google Scholar 

  • Laurent, S., Caviezel, B., Beck, L. et al. (1994b). Carotid artery distensibility and distending pressure in hypertensive humans. Hypertension 23: 878–883.

    Article  Google Scholar 

  • Learoyd, B.,M., Taylor, M.,G. (1966.) Alterations with age in the viscoelastic properties of human arterial walls. Circulation Research 18: 278–292.

    Google Scholar 

  • Lehmann, E.,D., Hopkins, K.,D., Gosling, R.,G. (1993). Aortic compliance measurements using Doppler ultrasound: in vivo biochemical correlates. Ultrasound in Medicine and Biology 19: 683–710.

    Google Scholar 

  • Levesque, M.J., Nerem, R.M. (1985). The elongation and orientation of cultured endothelial cells in response to shear stress. Journal of Biomechanical Engineering 107: 341–347.

    Article  Google Scholar 

  • Li, D.Y., Brooke, B., Davis, E.C., et al. (1998). Elastin is an essential determinant of arterial morphogenesis. Nature 393: 276–280.

    Article  Google Scholar 

  • Menotti, A., Seccareccia, F., Giampaoij, S., Giuli, B. (1998). The predictive role of systolic, diastolic and mean blood pressure on cardiovascular and all causes of death. Hypertension 7: 595–599.

    Google Scholar 

  • Milnor, W.,R. (1989). Hemodynamics. Baltimore: Williams and Wilkins

    Google Scholar 

  • Mozersky, D.,J., Sumner, D.,S., Hokanson, D.,E., Strandness Jr., D.,E. (1972). Transcutaneous measurement of the elastic properties of the human femoral artery. Circulation 46: 948–955.

    Google Scholar 

  • Murray, C.D. (1926). The pysiological principle of minimum work. I: The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciencse USA 12: 207–214.

    Article  Google Scholar 

  • Nichols, W.W., O’Rourke, M. F. (1990). Mc Donald’s blood flow in arteries. London, Melbourne, Auckland: Edward Arnold 424–425.

    Google Scholar 

  • O’Rourke, M. (1990). Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension 15: 339–347.

    Article  Google Scholar 

  • Oyre, S., Pedersen, E.,M., Ringgaard, S. et al. (1997) In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta. European Journal of Vascular and Endovascular Surgery 13: 263–271.

    Article  Google Scholar 

  • Oyre, S., Ringgaard, S., Kozerke, S. et al. (1998). Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data Journal of the American College of Cardiology 32: 128–134.

    Article  Google Scholar 

  • Patel, D.,J., Fry, D.,L. (1966). Longitudinal tethering of arteries in dogs. Circulation Research 19: 1011–1021

    Google Scholar 

  • Perktold, K., Thurner, E., Kenner, T. (1994) Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Medicine and Biology in Engineering and Computing. 32: 19–26.

    Article  Google Scholar 

  • Pignoli, P., Tremoli, E., Poli, A. et al. (1986). Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 74: 1399–1406.

    Article  Google Scholar 

  • Reneman, R.S., Van Merode, T., Hick, P., Hoeks, A.,P.,G. (1985). Flow velocity patterns in and distensibility of the carotid artery bulb in subjects of various ages. Circulation 71: 500–509.

    Article  Google Scholar 

  • Reneman, R.,S., Van Merode, T., Hick, P., Hoeks, A.,P.,G. (1986). Cardiovascular applications of multigate pulsed Doppler systems. Ultrasound in Medicine and Biology. 12: 357–370.

    Google Scholar 

  • Reneman, R.,S., Van Merode, T., Hick, et al. (1986). Age-related changes in carotid artery wall properties in men. Ultrasound in Medicine and Biology 12: 465–471.

    Google Scholar 

  • Riley, W.A., Barnes, R.W., Evans, G.W., Burke, G.L. (1992). Ultrasonic measurement of the elastic modulus of the common carotid artery. Stroke 23: 952–956.

    Article  Google Scholar 

  • Riley, W.,A., Craven, T., Romont, A., Furberg, C. (1996). Assessment of temporal bias in longitudinal measurements of carotid intimal-media thickness in the asymptomatic carotid artery progression study (ACAPS). Ultrasound in Medicine and Biology 22: 405–411.

    Google Scholar 

  • Roach, M.R., Burton, A.C. (1957). The reason for the shape of the distensibility curves of arteries. Canadian Journal of Biochemical Physiology 35: 681–690.

    Article  Google Scholar 

  • Robert, L., Robert,B., Robert, A.M. (1970). Molecular biology of elastin as related to aging and atherosclerosis. Experimental Gerontology 5: 339–356.

    Google Scholar 

  • Rossitti, S., Lofgren, J. (1993). Vascular dimensions of the cerebral arteries follow the principle of minimum work. Stroke 24: 371–377.

    Article  Google Scholar 

  • Rubanyi, G.M., Freay, A.D., Kauser, K., et al. (1990). Mechanoreception by the endothelium: mediators and mechanisms of pressure-and flow-induced vascular responses. Blood Vessels 27: 246–257.

    Google Scholar 

  • Salonen, J.,T., Salonen, R. (1991). Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arteriosclerosis Thrombosis 11: 1245–1249.

    Google Scholar 

  • Samijo, S.K., Willigers, J.M., Barkhuysen R., et al. (1998). Wall shear stress in the common carotid artery as function of age and gender. Cardiovascular Research 29: 515–522.

    Article  Google Scholar 

  • Safar, M.,E., Peronneau, P.,A., Levenson, J.,A. et al. (1981). Pulsed Doppler: diameter, blood flow velocity and volumic flow of the brachial artery in sustained essential hypertension. Circulation 2: 393–400.

    Google Scholar 

  • Sagie, A., Larson, M.G., Levy, D. (1993). The natural history of borderline isolated systolic hypertension. New England Journal of Medicine 329: 1912–1917.

    Article  Google Scholar 

  • Sakamoto, K., Kanai, H. (1979). Electrical characteristics of flowing blood. IEE Transactions Biomedical Engineering 26: 686–695.

    Article  Google Scholar 

  • Samijo, S.,K., Willigers, J.,L., Brands, P.,J. et al. (1997). Reproducibility of shear rate and shear stress assessment by means of ultrasound in the common carotid artery of young human males and females. Ultrasound in Medicine and Biology. 23: 583–593.

    Google Scholar 

  • Stary, H.C., Blankenhorn, D.H., Chandler, A.B. (1992). A definition of the intima of human arteries and of its atherosclerosis-prone regions. Arteriosclerosis and Thrombosis 12: 120–134.

    Article  Google Scholar 

  • Tsao, P.S., Buitrago, R., Chan, J.R., Cooke, J.P. (1996). Fluid flow inhibits endothelial adhesiveness, nitric oxide and transcriptional regulation of VCAM-1. Circulation 94: 1682–1689.

    Article  Google Scholar 

  • Van Gorp, A.W., Van Ingen Schenau, D.S., Hoeks, A.P.G., et al. (2000). In spontaneously hypertensive rats alterations in aortic wall properties precede development of hypertension. American Journal of Physiology 287: H1241 - H1247.

    Google Scholar 

  • Van Gorp, A.,W., Van Ingen Schenau, D.,S., Hoeks, A.,P.,G. et al. (1995). Aortic wall properties in normotensive and hypertensive rats of various ages in vivo. Hypertension 26: 363–368.

    Article  Google Scholar 

  • Van Merode, T., Brands PJ, Hoeks APG, Reneman RS (1993) Faster ageing of the carotid artery bifurcation in borderline hypertensive subjects. Journal of Hypertension 11: 171–176.

    Article  Google Scholar 

  • Van Merode, T, Brands, P.,J., Hoeks, A.,P.,G., Reneman, R.,S. (1996) Different effects of ageing on elastic and muscular bifurcations in men. Journal of Vascular Research 33: 47–52.

    Article  Google Scholar 

  • Van Merode, T., Hick, P.,J.,J., Hoeks, A.,P.,G. et al. (1988). Carotid artery wall properties in normotensive and borderline hypertensive subjects of various ages. Ultrasound in Medicine and Biology 14: 563–569.

    Article  Google Scholar 

  • Van Merode, T., Lodder, J., Smeets, F.,A.,M. et al. (1989). Accurate noninvasive method to diagnose minor atherosclerotic lesions in carotid artery bulb. Stroke 20: 1336–1340.

    Article  Google Scholar 

  • Ventura, H., Messerli, F,H., Oigman, W. et al. (1984). Impaired systemic arterial compliance in borderline hypertension. American Heart Journal 108: 132–136.

    Article  Google Scholar 

  • Wells, P., N., T., (1969). Physical principles of ultrasonic diagnosis. London, New York: Academic Press.

    Google Scholar 

  • Willekes, C., Brandts, P.,J., Willigers, J.,M. et al. (1999). Assessment of local differences in intima-media thickness in the human common carotid artery. Journal of Vascular Research 36: 222–228.

    Article  Google Scholar 

  • Zarins, C.K., Giddens, D.P., Bharadvaj, B.K., et al. (1983). Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research 53: 502–514.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Reneman, R.S., Hoeks, A.P.G., Kornet, L. (2003). Element of Physiology and Mechanics of Human Arteries. In: Pedrizzetti, G., Perktold, K. (eds) Cardiovascular Fluid Mechanics. International Centre for Mechanical Sciences, vol 446. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2542-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2542-7_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00538-5

  • Online ISBN: 978-3-7091-2542-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics