Skip to main content

Fluid Flow inside Deformable Vessels and in the Left Ventricle

  • Chapter
Cardiovascular Fluid Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 446))

  • 413 Accesses

Abstract

Topics regarding flow inside deformable domains are here considered either for artery and ventricle flows. The theory of finite elasticity is summarised in a perspective of application to fluid-tissue interaction problems. The formulation of a coupled fluid tissue problem is discussed. A linearized technique is then introduced as a model for wall elasticity in artery flow. This simplification transforms the coupled fluid-wall system into a cascade of uncoupled systems on a fixed domain. Computational examples are given in axisymmetric problems, for both finite and infinitesimal deformation cases, to show resonance and stability features of the interactive dynamics. The heart dynamics and the major ventricular diseases are briefly summarised in a mechanical perspective. The formulation of the flow in a model left ventricle is given, and numerical solutions for flow during the left ventricle filling (diastole) is studied and analysed in terms of vorticity dynamics Results are also presented in relation to the physical phenomena observed in the clinical practice. In connection with this the mitral valve modelling is also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anayiotos, A. S., Jones, S. A., Giddens, D. P., Glagov, S., and Zarins, C. K. (1994) Shear stress at a compliant model of the human carotid bifurcation. ASME Journal of Biomechanical Engineering 116: 98–106.

    Article  Google Scholar 

  • Baccani, B., Domenichini, F., Pedrizzetti, G., and Tonti G. (2002a) Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. Journal of Biomechanics 35: 665–671.

    Article  Google Scholar 

  • Baccani, B., Domenichini, F., and Pedrizzetti, G. (2002b) Vortex dynamics in a model left ventricle during filling. Manuscript submitted for publication.

    Google Scholar 

  • Bargiggia, G. S., Tronconi L., Sahn, D. J., et al. (1991) A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 84: 1481–1489.

    Article  Google Scholar 

  • Batchelor, G. K. (1967) An Introduction to Fluid Dynamics. Cambridge, UK: Cambridge University Press.

    MATH  Google Scholar 

  • Bellhouse, B. J., (1972) Fluid mechanics of a model mitral valve and left ventricle. Cardiovas. Res. 6: 199–210.

    Article  Google Scholar 

  • Bolzon, G., Pedrizzetti, G., Zovatto, L., Grigioni, M., Daniele, C., and D’Avenio G. (2002) Flow on the symmetry plane of the total cavo-pulmonary connection. Journal of Biomechanics 35: 33–46.

    Article  Google Scholar 

  • Botnar, R., Rappitsch, G., Scheidegger, M. B., Liepsch, D., Perktold, K., and Boesiger, P. (2000) Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. Journal of Biomechanics 33: 137–144.

    Article  Google Scholar 

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988) Spectral Methods in Fluid Dynamics. New York, NY: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Davies, C., and Carpenter, P. W. (1997) Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels. Journal of Fluid Mechanics 335: 361–392.

    Article  MATH  MathSciNet  Google Scholar 

  • Eiseman, P. R. (1985) Grid generation for fluid mechanics computation. Annual Review of Fluid Mechanics 17: 487–522.

    Article  Google Scholar 

  • Fung, Y. C. (1997) Biomechanics: Circulation. New York, NY: Springer-Verlag, 2nd edition.

    Book  Google Scholar 

  • Gaasch, W. H., and Winter, M. M. (1994) Left ventricular diastolic dysfunction and heart failure. Vol. 1. Malvern, PA: Lea & Febiger.

    Google Scholar 

  • Garcia, M. J., Thomas, J. D., and Klein, A. L. (1998) New Doppler echocardiographic applications for the study of diastolic function. Journal of the American College of Cardiology 32: 865–875.

    Article  Google Scholar 

  • Garcia, M. J., Smedira, N. G., Greenberg, N. L., Main, M., Firstenberg, M. S., Odabashian, J., and Thomas, J. D. (1999) Color M-Mode Doppler Flow Propagation Velocity is a Preload Insensitive Index of Left Ventricular Relaxation: Animal and Human Validation. Journal of the American College of Cardiology 35: 201–208.

    Article  Google Scholar 

  • Green, A.E., and Adkins, J. E. (1960) Large Elastic Deformations. Oxford, UK: Clarendon Press.

    MATH  Google Scholar 

  • Grigioni, M., Pedrizzetti, G., Amodeo, A., Daniele, C., D’Avenio, C., Zovatto, L., and Di Donato, R.M. (2000) A comparison between numerical and PIV studies of the flow through a total cavopulmonary connection. International Journal of Artificial Organs 23: 579.

    Google Scholar 

  • Heil, M., (1997) Stokes flow in collapsible tubes: computation and experiment. Journal of Fluid Mechanics 353: 285–312.

    Article  MATH  Google Scholar 

  • Hsu, F. P. K., Schwab, C., Rigamonti, D., and Humphrey, J. D. (1994) Identification of response functions from axisymmetric membrane inflation tests: implication for biomechanics. International Journal of Solids and Structures 31: 3375–3386.

    Article  MATH  Google Scholar 

  • Humphrey, J. D., (1995) Mechanics of the arterial wall: review and directions. Critical Reviews in Biomedical Engineering 23: 1–162.

    Google Scholar 

  • Humphrey, J. D., Strumpf, R. K., and Yin, F. C. P. (1992) A constitutive theory for biomembranes: application to epicardial mechanics. Journal of Biomechanical Engineering 114: 461–466.

    Article  Google Scholar 

  • Jensen, O. E. (1992) Chaotic oscillations in a simple collapsible tube model. Journal of Biomechanical Engineering 114: 55–59.

    Article  Google Scholar 

  • Kilner, P. J., Yang, G. Z., Wilkes, A. J., Mohiaddin, R. H., Firmin, D. N., and Yacoub, M. H. (2000) Asymmetric redirection of flow through the heart. Nature 404: 759–761.

    Article  Google Scholar 

  • Kim, W. Y., Bisgaard, T., Nielsen, S. L., Poulsen, J. K., Pedersen, E. M., Hasenkam, J. M., and Yoganathan, A. P. (1994) Two-dimensional mitral flow velocity profiles in pig models using epicardial echo Doppler Cardiography. Journal of the American College of Cardiology 24: 532–545.

    Article  Google Scholar 

  • Kim, W. Y., Walker, P. G., Pedersen, E. M., Poulsen, J. K., Oyre, S., Houlind, K., and Yoganathan, A. P. (1995) Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. Journal of the American College of Cardiology 26: 224–238.

    Article  Google Scholar 

  • Kumaran, V., (1996) Stability of inviscid flow in a flexible tube. Journal of Fluid Mechanics 320: 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  • Kyriacou, S. K., and Humphrey, J. D. (1996) Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. Journal ofBiomechanics 29: 1015–1022.

    Article  Google Scholar 

  • Lemmon, J. D., and Yoganathan, A. P. (2000) Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. Journal of Biomechanical Engineering 122: 109–117.

    Article  Google Scholar 

  • Lighthill, J. (1978) Waves in Fluids. Cambridge, UK. Cambridge University Press.

    Google Scholar 

  • Little, W. C. (2000) Assessment of Normal and Abnormal Cardiac Function. In Braunwald E., Zipes, D. P., and Libby, P., eds, Heart Disease, A Textbook of Cardiovascular Medicine. Philadelphia, PA: Saunders W. B., 6th edition, Chapter 15.

    Google Scholar 

  • Lucey, A. D., and Carpenter, P. W. (1992) A numerical simulation of the interaction of a compliant wall and inviscid flow. Journal of Fluid Mechanics 234: 121–146.

    Article  MATH  Google Scholar 

  • Luo, X. Y., and Pedley, T. J. (1995), A numerical simulation of steady flow in a 2-D collapsible channel, Journal of Fluids and Structures 9: 149–174.

    Article  Google Scholar 

  • Luo, X. Y., and Pedley, T. J. (1996) A numerical simulation of unsteady flow in a two-dimensional collapsible channel. Journal of Fluid Mechanics 314: 191–225.

    Article  MATH  Google Scholar 

  • Luo, X. Y., and Pedley, T. J. (1998) The effects of wall inertia on flow in a two-dimensional collapsible channel. Journal of Fluid Mechanics 363: 253–280.

    Article  MATH  Google Scholar 

  • Mandinov, L., Eberli, F. R., Seiler, C., and Hess, O.M. (2000) Review: Diastolic heart failure. Cardiovascular Research 45: 813–825.

    Article  Google Scholar 

  • Masugata, H., Peters, B., Lafitte, S., Monet Strachan, G., Ohmori, K., DeMaria, A. N. (2001) Quantitative Assessment of Myocardial Perfusion During Graded Coronary Stenosis by Real-Time Myocardial Contrast Echo Refilling Curves. J. Am. Coll. Cardiol. 37: 262–269.

    Article  Google Scholar 

  • McQueen, D. M., and Peskin, C. S. (1997) Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. Journal of Supercomputing 11: 213–236.

    Article  Google Scholar 

  • McQueen, D. M., and Peskin, C. S. (2000) A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Computer Graphics 34: 56–60.

    Article  Google Scholar 

  • Morse, P. M., and Feshbach, H. (1953) Methods of theoretical physics. New York, NY: McGraw-Hill.

    MATH  Google Scholar 

  • Wier, J. E., Poulsen, S. H., Sondergaard, E., and Egstrup, K. (2000) Preload Dependence of Color M-Mode Doppler Flow Propagation Velocity in Controls and in Patients with Left Ventricular Dysfunction. Journal of the American Society of Echocardiography 13: 902–909.

    Article  Google Scholar 

  • Miller, J. E., S¢ndergaard, E., Poulsen, S. H., and Egstrup, K. (2000) Pseudonormal and Restrictive Filling Patterns Predict Left Ventricular Dilation and Cardiac Death After A First Myocardial Infarction: A Serial Color M-Mode Doppler Echocardiographic Study. Journal of the American College of Cardiology 36: 1841–1846.

    Google Scholar 

  • Opie, L. H. (2000) Mechanisms of cardiac contraction and relaxation. In Braunwald E., Zipes, D. P., and Libby, P., eds, Heart Disease, A Textbook of Cardiovascular Medicine. Philadelphia, PA: Saunders W. B., 6th edition, Chapter 14.

    Google Scholar 

  • Pai, R. G., and Stoletniy, L. N. (1999) An Integrated Measure of Left Ventricular Diastolic Function Based on Relative Rates of Mitral E and A Wave Propagation. Journal of the American Society of Echocardiography 12: 811–816.

    Article  Google Scholar 

  • Panton, R. (1996) Incompressible Flow. New York, NY: John Wiley & Sons.

    Google Scholar 

  • Pedrizzetti, G. (1996), Unsteady tube flow over an expansion, Journal of Fluid Mechanics, 310: 89–111.

    Article  MATH  Google Scholar 

  • Pedrizzetti, G. (1998) Fluid flow in a tube with an elastic membrane insertion. Journal of Fluid Mechanics 375: 39–64.

    Article  MATH  MathSciNet  Google Scholar 

  • Pedrizzetti, G., Domenichini, F., Tortoriello, A., and Zovatto, L. (2002) Pulsatile flow inside moderately elastic arteries, its modelling and effects of elasticity. Computer Methods in Biomechanics and Biomedical Engineering (in press).

    Google Scholar 

  • Perktold, K., and Rapitsch, G. (1995) Computer simulation of local blod flow and vessel mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics 28: 845–856.

    Article  Google Scholar 

  • Peskin, C. S., and McQueen, D.M. (1989) A three-dimensional computational method for blood flow in the heart: I Immersed elastic fibers in an incompressible fluid. Journal of Computational Physics 81: 372–405.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C. S., and McQueen, D.M. (1989) A three-dimensional computational method for blood flow in the heart: II Contractile fibers. Journal of Computational Physics 82: 289–298.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C. S., and Printz, B. F. (1993) Improved volume conservation for the three-dimensional Navier-Stokes equations involving an immersed moving membrane. Journal of Computational Physics 105: 33–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Pipkin, A. C. (1968) Integration of an equation in membrane theory. Zeitschrfl für Angewandte Mathematik and Physik 19: 818–819.

    Article  MATH  Google Scholar 

  • Redaelli, A., Montevecchi, F. M. (1996) Computational evaluation of intraventricular pressure gradients based on a fluid-structure approach. Journal of Biomechanical Engineering 118: 529–537.

    Article  Google Scholar 

  • Reul, H., Talukder, N., and Muller, W. (1981) Fluid mechanics of the natural mitral valve. Journal of Biomechanics 14: 361–72.

    Article  Google Scholar 

  • Roache, P. J. (1998) Fundamentals of Computational Fluid Dynamics. Albuquerque, NM: Hermosa.

    Google Scholar 

  • Steen, T., and Steen, S. (1994) Filling of a model left ventricle studied by colour M mode Doppler. Cardiovascular Research 28: 1821–1827.

    Article  Google Scholar 

  • Takatsuji, H., Mikami, T., Urasawa, K., Teranishi, J. I., Onozuka, H., Takagi, C., Makita, Y., Matsuo, H., Kusuoka, H., and Kitabatake, A. (1997) A new approach for evaluation of left ventricular diastolic function: spatial and temporal analysis of ventricular filling flow propagation by color M-Mode Doppler echocardiography. Journal of the American College of Cardiology 27: 365–371.

    Article  Google Scholar 

  • Taylor, T. W., and Yamaguchi T. (1995) Realistic three-dimensional left ventricular ejection determined from computational fluid dynamics. Medical Engineering & Physics 17: 602–608.

    Article  Google Scholar 

  • Trambaiolo, P., Tonti, G., Salustri, A., Fedele, F., and Sutherland G. (2000) New insights onto regional systolic and diastolic left ventricular function with tissue Doppler

    Google Scholar 

  • echocardiography: from qualitative analysis to a quantitative approach. Journal of the American Society of Echocardiography 14: 85–96.

    Google Scholar 

  • Urheim, S., Edvardsen, T., Torp, H., Angelsen, B., Smiseth, O. A. (2000) Myocardial Strain by Doppler Echocardiography Validation of a New Method to Quantify Regional Myocardial Function. Circulation 102: 1158–1164.

    Article  Google Scholar 

  • Van Dyke, M. (1975) Perturbation methods in fluid mechanics. Stanford, CA: The Parabolic Press.

    MATH  Google Scholar 

  • Vierendeels, J. A, Verdonck, P., and Dick, E. (1997) Intraventricular pressure gradient and the role of pressure wave propagation. Journal of Cardiovascular Diagnosis and Procedures 14: 147–152.

    Google Scholar 

  • Vierendeels, J. A., Riemslagh, K., Dick, E., and Verdonck, P. R. (2000) Computer simulation of intraventricular flow and pressure during diastole. Journal of Biomechanical Engineering 122: 667–674.

    Article  Google Scholar 

  • Walker, P. G., Oyre, S., Pedersen, et al. (1995) A new control volume method for calculating valvular regurgitation. Circulation 92: 579–586.

    Article  Google Scholar 

  • Wang, D. M., and Tarbell, J. M. (1992), Nonlinear analysis of flow in an elastic tube (artery): steady streaming effects, Journal of Fluid Mechanics 239: 341–358.

    Article  MATH  Google Scholar 

  • Wieting, D. W., and Stripling, T. E. (1984) Dynamics and fluid dynamics of the mitral valve. In Duran, C., Angell, W. W., Johnson, A. D., and Oury, J. H., eds., Recent Progress in Mitral Valve Disease. London: Butterworths, 13–46.

    Chapter  Google Scholar 

  • Zhao, S. Z., Xu, X. Y., Hughes, A. D., Thom, S. A., Stanton, A. V., Ariff, B., and Long, Q. (2000) Blood flow and vessel mechanics in a physiologically realistic model of a human carotid bifurcation. Journal of Biomechanics 33: 975–984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Pedrizzetti, G., Domenichini, F. (2003). Fluid Flow inside Deformable Vessels and in the Left Ventricle. In: Pedrizzetti, G., Perktold, K. (eds) Cardiovascular Fluid Mechanics. International Centre for Mechanical Sciences, vol 446. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2542-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2542-7_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00538-5

  • Online ISBN: 978-3-7091-2542-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics