Fluid Flow inside Deformable Vessels and in the Left Ventricle

  • Gianni Pedrizzetti
  • Federico Domenichini
Part of the International Centre for Mechanical Sciences book series (CISM, volume 446)


Topics regarding flow inside deformable domains are here considered either for artery and ventricle flows. The theory of finite elasticity is summarised in a perspective of application to fluid-tissue interaction problems. The formulation of a coupled fluid tissue problem is discussed. A linearized technique is then introduced as a model for wall elasticity in artery flow. This simplification transforms the coupled fluid-wall system into a cascade of uncoupled systems on a fixed domain. Computational examples are given in axisymmetric problems, for both finite and infinitesimal deformation cases, to show resonance and stability features of the interactive dynamics. The heart dynamics and the major ventricular diseases are briefly summarised in a mechanical perspective. The formulation of the flow in a model left ventricle is given, and numerical solutions for flow during the left ventricle filling (diastole) is studied and analysed in terms of vorticity dynamics Results are also presented in relation to the physical phenomena observed in the clinical practice. In connection with this the mitral valve modelling is also introduced.


Mitral Valve Wall Shear Stress Vortex Wake Elastic Wall Wall Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anayiotos, A. S., Jones, S. A., Giddens, D. P., Glagov, S., and Zarins, C. K. (1994) Shear stress at a compliant model of the human carotid bifurcation. ASME Journal of Biomechanical Engineering 116: 98–106.CrossRefGoogle Scholar
  2. Baccani, B., Domenichini, F., Pedrizzetti, G., and Tonti G. (2002a) Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. Journal of Biomechanics 35: 665–671.CrossRefGoogle Scholar
  3. Baccani, B., Domenichini, F., and Pedrizzetti, G. (2002b) Vortex dynamics in a model left ventricle during filling. Manuscript submitted for publication.Google Scholar
  4. Bargiggia, G. S., Tronconi L., Sahn, D. J., et al. (1991) A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 84: 1481–1489.CrossRefGoogle Scholar
  5. Batchelor, G. K. (1967) An Introduction to Fluid Dynamics. Cambridge, UK: Cambridge University Press.MATHGoogle Scholar
  6. Bellhouse, B. J., (1972) Fluid mechanics of a model mitral valve and left ventricle. Cardiovas. Res. 6: 199–210.CrossRefGoogle Scholar
  7. Bolzon, G., Pedrizzetti, G., Zovatto, L., Grigioni, M., Daniele, C., and D’Avenio G. (2002) Flow on the symmetry plane of the total cavo-pulmonary connection. Journal of Biomechanics 35: 33–46.CrossRefGoogle Scholar
  8. Botnar, R., Rappitsch, G., Scheidegger, M. B., Liepsch, D., Perktold, K., and Boesiger, P. (2000) Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. Journal of Biomechanics 33: 137–144.CrossRefGoogle Scholar
  9. Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988) Spectral Methods in Fluid Dynamics. New York, NY: Springer-Verlag.CrossRefMATHGoogle Scholar
  10. Davies, C., and Carpenter, P. W. (1997) Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels. Journal of Fluid Mechanics 335: 361–392.CrossRefMATHMathSciNetGoogle Scholar
  11. Eiseman, P. R. (1985) Grid generation for fluid mechanics computation. Annual Review of Fluid Mechanics 17: 487–522.CrossRefGoogle Scholar
  12. Fung, Y. C. (1997) Biomechanics: Circulation. New York, NY: Springer-Verlag, 2nd edition.CrossRefGoogle Scholar
  13. Gaasch, W. H., and Winter, M. M. (1994) Left ventricular diastolic dysfunction and heart failure. Vol. 1. Malvern, PA: Lea & Febiger.Google Scholar
  14. Garcia, M. J., Thomas, J. D., and Klein, A. L. (1998) New Doppler echocardiographic applications for the study of diastolic function. Journal of the American College of Cardiology 32: 865–875.CrossRefGoogle Scholar
  15. Garcia, M. J., Smedira, N. G., Greenberg, N. L., Main, M., Firstenberg, M. S., Odabashian, J., and Thomas, J. D. (1999) Color M-Mode Doppler Flow Propagation Velocity is a Preload Insensitive Index of Left Ventricular Relaxation: Animal and Human Validation. Journal of the American College of Cardiology 35: 201–208.CrossRefGoogle Scholar
  16. Green, A.E., and Adkins, J. E. (1960) Large Elastic Deformations. Oxford, UK: Clarendon Press.MATHGoogle Scholar
  17. Grigioni, M., Pedrizzetti, G., Amodeo, A., Daniele, C., D’Avenio, C., Zovatto, L., and Di Donato, R.M. (2000) A comparison between numerical and PIV studies of the flow through a total cavopulmonary connection. International Journal of Artificial Organs 23: 579.Google Scholar
  18. Heil, M., (1997) Stokes flow in collapsible tubes: computation and experiment. Journal of Fluid Mechanics 353: 285–312.CrossRefMATHGoogle Scholar
  19. Hsu, F. P. K., Schwab, C., Rigamonti, D., and Humphrey, J. D. (1994) Identification of response functions from axisymmetric membrane inflation tests: implication for biomechanics. International Journal of Solids and Structures 31: 3375–3386.CrossRefMATHGoogle Scholar
  20. Humphrey, J. D., (1995) Mechanics of the arterial wall: review and directions. Critical Reviews in Biomedical Engineering 23: 1–162.Google Scholar
  21. Humphrey, J. D., Strumpf, R. K., and Yin, F. C. P. (1992) A constitutive theory for biomembranes: application to epicardial mechanics. Journal of Biomechanical Engineering 114: 461–466.CrossRefGoogle Scholar
  22. Jensen, O. E. (1992) Chaotic oscillations in a simple collapsible tube model. Journal of Biomechanical Engineering 114: 55–59.CrossRefGoogle Scholar
  23. Kilner, P. J., Yang, G. Z., Wilkes, A. J., Mohiaddin, R. H., Firmin, D. N., and Yacoub, M. H. (2000) Asymmetric redirection of flow through the heart. Nature 404: 759–761.CrossRefGoogle Scholar
  24. Kim, W. Y., Bisgaard, T., Nielsen, S. L., Poulsen, J. K., Pedersen, E. M., Hasenkam, J. M., and Yoganathan, A. P. (1994) Two-dimensional mitral flow velocity profiles in pig models using epicardial echo Doppler Cardiography. Journal of the American College of Cardiology 24: 532–545.CrossRefGoogle Scholar
  25. Kim, W. Y., Walker, P. G., Pedersen, E. M., Poulsen, J. K., Oyre, S., Houlind, K., and Yoganathan, A. P. (1995) Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. Journal of the American College of Cardiology 26: 224–238.CrossRefGoogle Scholar
  26. Kumaran, V., (1996) Stability of inviscid flow in a flexible tube. Journal of Fluid Mechanics 320: 1–17.CrossRefMATHMathSciNetGoogle Scholar
  27. Kyriacou, S. K., and Humphrey, J. D. (1996) Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. Journal ofBiomechanics 29: 1015–1022.CrossRefGoogle Scholar
  28. Lemmon, J. D., and Yoganathan, A. P. (2000) Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. Journal of Biomechanical Engineering 122: 109–117.CrossRefGoogle Scholar
  29. Lighthill, J. (1978) Waves in Fluids. Cambridge, UK. Cambridge University Press.Google Scholar
  30. Little, W. C. (2000) Assessment of Normal and Abnormal Cardiac Function. In Braunwald E., Zipes, D. P., and Libby, P., eds, Heart Disease, A Textbook of Cardiovascular Medicine. Philadelphia, PA: Saunders W. B., 6th edition, Chapter 15.Google Scholar
  31. Lucey, A. D., and Carpenter, P. W. (1992) A numerical simulation of the interaction of a compliant wall and inviscid flow. Journal of Fluid Mechanics 234: 121–146.CrossRefMATHGoogle Scholar
  32. Luo, X. Y., and Pedley, T. J. (1995), A numerical simulation of steady flow in a 2-D collapsible channel, Journal of Fluids and Structures 9: 149–174.CrossRefGoogle Scholar
  33. Luo, X. Y., and Pedley, T. J. (1996) A numerical simulation of unsteady flow in a two-dimensional collapsible channel. Journal of Fluid Mechanics 314: 191–225.CrossRefMATHGoogle Scholar
  34. Luo, X. Y., and Pedley, T. J. (1998) The effects of wall inertia on flow in a two-dimensional collapsible channel. Journal of Fluid Mechanics 363: 253–280.CrossRefMATHGoogle Scholar
  35. Mandinov, L., Eberli, F. R., Seiler, C., and Hess, O.M. (2000) Review: Diastolic heart failure. Cardiovascular Research 45: 813–825.CrossRefGoogle Scholar
  36. Masugata, H., Peters, B., Lafitte, S., Monet Strachan, G., Ohmori, K., DeMaria, A. N. (2001) Quantitative Assessment of Myocardial Perfusion During Graded Coronary Stenosis by Real-Time Myocardial Contrast Echo Refilling Curves. J. Am. Coll. Cardiol. 37: 262–269.CrossRefGoogle Scholar
  37. McQueen, D. M., and Peskin, C. S. (1997) Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. Journal of Supercomputing 11: 213–236.CrossRefGoogle Scholar
  38. McQueen, D. M., and Peskin, C. S. (2000) A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Computer Graphics 34: 56–60.CrossRefGoogle Scholar
  39. Morse, P. M., and Feshbach, H. (1953) Methods of theoretical physics. New York, NY: McGraw-Hill.MATHGoogle Scholar
  40. Wier, J. E., Poulsen, S. H., Sondergaard, E., and Egstrup, K. (2000) Preload Dependence of Color M-Mode Doppler Flow Propagation Velocity in Controls and in Patients with Left Ventricular Dysfunction. Journal of the American Society of Echocardiography 13: 902–909.CrossRefGoogle Scholar
  41. Miller, J. E., S¢ndergaard, E., Poulsen, S. H., and Egstrup, K. (2000) Pseudonormal and Restrictive Filling Patterns Predict Left Ventricular Dilation and Cardiac Death After A First Myocardial Infarction: A Serial Color M-Mode Doppler Echocardiographic Study. Journal of the American College of Cardiology 36: 1841–1846.Google Scholar
  42. Opie, L. H. (2000) Mechanisms of cardiac contraction and relaxation. In Braunwald E., Zipes, D. P., and Libby, P., eds, Heart Disease, A Textbook of Cardiovascular Medicine. Philadelphia, PA: Saunders W. B., 6th edition, Chapter 14.Google Scholar
  43. Pai, R. G., and Stoletniy, L. N. (1999) An Integrated Measure of Left Ventricular Diastolic Function Based on Relative Rates of Mitral E and A Wave Propagation. Journal of the American Society of Echocardiography 12: 811–816.CrossRefGoogle Scholar
  44. Panton, R. (1996) Incompressible Flow. New York, NY: John Wiley & Sons.Google Scholar
  45. Pedrizzetti, G. (1996), Unsteady tube flow over an expansion, Journal of Fluid Mechanics, 310: 89–111.CrossRefMATHGoogle Scholar
  46. Pedrizzetti, G. (1998) Fluid flow in a tube with an elastic membrane insertion. Journal of Fluid Mechanics 375: 39–64.CrossRefMATHMathSciNetGoogle Scholar
  47. Pedrizzetti, G., Domenichini, F., Tortoriello, A., and Zovatto, L. (2002) Pulsatile flow inside moderately elastic arteries, its modelling and effects of elasticity. Computer Methods in Biomechanics and Biomedical Engineering (in press).Google Scholar
  48. Perktold, K., and Rapitsch, G. (1995) Computer simulation of local blod flow and vessel mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics 28: 845–856.CrossRefGoogle Scholar
  49. Peskin, C. S., and McQueen, D.M. (1989) A three-dimensional computational method for blood flow in the heart: I Immersed elastic fibers in an incompressible fluid. Journal of Computational Physics 81: 372–405.CrossRefMATHMathSciNetGoogle Scholar
  50. Peskin, C. S., and McQueen, D.M. (1989) A three-dimensional computational method for blood flow in the heart: II Contractile fibers. Journal of Computational Physics 82: 289–298.CrossRefMATHMathSciNetGoogle Scholar
  51. Peskin, C. S., and Printz, B. F. (1993) Improved volume conservation for the three-dimensional Navier-Stokes equations involving an immersed moving membrane. Journal of Computational Physics 105: 33–46.CrossRefMATHMathSciNetGoogle Scholar
  52. Pipkin, A. C. (1968) Integration of an equation in membrane theory. Zeitschrfl für Angewandte Mathematik and Physik 19: 818–819.CrossRefMATHGoogle Scholar
  53. Redaelli, A., Montevecchi, F. M. (1996) Computational evaluation of intraventricular pressure gradients based on a fluid-structure approach. Journal of Biomechanical Engineering 118: 529–537.CrossRefGoogle Scholar
  54. Reul, H., Talukder, N., and Muller, W. (1981) Fluid mechanics of the natural mitral valve. Journal of Biomechanics 14: 361–72.CrossRefGoogle Scholar
  55. Roache, P. J. (1998) Fundamentals of Computational Fluid Dynamics. Albuquerque, NM: Hermosa.Google Scholar
  56. Steen, T., and Steen, S. (1994) Filling of a model left ventricle studied by colour M mode Doppler. Cardiovascular Research 28: 1821–1827.CrossRefGoogle Scholar
  57. Takatsuji, H., Mikami, T., Urasawa, K., Teranishi, J. I., Onozuka, H., Takagi, C., Makita, Y., Matsuo, H., Kusuoka, H., and Kitabatake, A. (1997) A new approach for evaluation of left ventricular diastolic function: spatial and temporal analysis of ventricular filling flow propagation by color M-Mode Doppler echocardiography. Journal of the American College of Cardiology 27: 365–371.CrossRefGoogle Scholar
  58. Taylor, T. W., and Yamaguchi T. (1995) Realistic three-dimensional left ventricular ejection determined from computational fluid dynamics. Medical Engineering & Physics 17: 602–608.CrossRefGoogle Scholar
  59. Trambaiolo, P., Tonti, G., Salustri, A., Fedele, F., and Sutherland G. (2000) New insights onto regional systolic and diastolic left ventricular function with tissue DopplerGoogle Scholar
  60. echocardiography: from qualitative analysis to a quantitative approach. Journal of the American Society of Echocardiography 14: 85–96.Google Scholar
  61. Urheim, S., Edvardsen, T., Torp, H., Angelsen, B., Smiseth, O. A. (2000) Myocardial Strain by Doppler Echocardiography Validation of a New Method to Quantify Regional Myocardial Function. Circulation 102: 1158–1164.CrossRefGoogle Scholar
  62. Van Dyke, M. (1975) Perturbation methods in fluid mechanics. Stanford, CA: The Parabolic Press.MATHGoogle Scholar
  63. Vierendeels, J. A, Verdonck, P., and Dick, E. (1997) Intraventricular pressure gradient and the role of pressure wave propagation. Journal of Cardiovascular Diagnosis and Procedures 14: 147–152.Google Scholar
  64. Vierendeels, J. A., Riemslagh, K., Dick, E., and Verdonck, P. R. (2000) Computer simulation of intraventricular flow and pressure during diastole. Journal of Biomechanical Engineering 122: 667–674.CrossRefGoogle Scholar
  65. Walker, P. G., Oyre, S., Pedersen, et al. (1995) A new control volume method for calculating valvular regurgitation. Circulation 92: 579–586.CrossRefGoogle Scholar
  66. Wang, D. M., and Tarbell, J. M. (1992), Nonlinear analysis of flow in an elastic tube (artery): steady streaming effects, Journal of Fluid Mechanics 239: 341–358.CrossRefMATHGoogle Scholar
  67. Wieting, D. W., and Stripling, T. E. (1984) Dynamics and fluid dynamics of the mitral valve. In Duran, C., Angell, W. W., Johnson, A. D., and Oury, J. H., eds., Recent Progress in Mitral Valve Disease. London: Butterworths, 13–46.CrossRefGoogle Scholar
  68. Zhao, S. Z., Xu, X. Y., Hughes, A. D., Thom, S. A., Stanton, A. V., Ariff, B., and Long, Q. (2000) Blood flow and vessel mechanics in a physiologically realistic model of a human carotid bifurcation. Journal of Biomechanics 33: 975–984.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Gianni Pedrizzetti
    • 1
  • Federico Domenichini
    • 2
  1. 1.Dipartimento di Ingegneria CivileUniversità di TriesteItaly
  2. 2.Dipartimento di Ingegneria CivileUniversità di FirenzeItaly

Personalised recommendations