Skip to main content

Finite Difference and Finite Volume Techniques for the Solution of Navier-Stokes Equations in Cardiovascular Fluid Mechanics

  • Chapter
Cardiovascular Fluid Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 446))

Abstract

The present notes summarize the flow equations involved in cardiovascular-fluid mechanics and the finite difference and finite volume numerical methods that are widely used for the modeling of flow through arteries of large or small size. In the case of flow through large size arteries two numerical methods are presented extensively based on a pressure-correction type methodology and a pseudocompressibility methodology for the solution of steady and unsteady flows through domains of deformable-moving walls. In the case of flow though small size arteries, the level set method is treated for the modeling of the multicomponent flow. Representative flow cases for cardiovascular fluid dynamics are also modeled and solved by using the above methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agresar, G., Linderman, J.J., Tryggvason, G. and Powell K.G. (1998). An Adaptive, Cartesian, Front-Tracking Method for the Motion, Deformation and Adhesion of Circulating Cells. Journal of Computational Physics. 143: 346–380.

    Article  MATH  MathSciNet  Google Scholar 

  • Aslam, T.D., Bdzil, J.B. and Stewart, D.S. (1996). Level Set Methods Applied to Modeling Detonation Shock Dynamics. Journal of Computational Physics. 126: 390–309.

    Article  MATH  MathSciNet  Google Scholar 

  • Attinger, E.O. (1968). Analysis of pulsatile blood flow. In Levine, S.N., ed., Advances in Biomedical Engineering and Medical Physics. New York: Interscience. 1–59.

    Google Scholar 

  • Beam, R. M., and Warming, R.F. (1976). An implicit finite-difference algorithm for hyperbolic system of conservation-law form. International Journal of Computational Physics. 22: 87–110.

    Article  MATH  MathSciNet  Google Scholar 

  • Caro, C.G., Pedley, T.J., Schroter, R.C., and Seed, W.A. (1978). The Mechanics of the Circulation. New York: Oxford University Press.

    MATH  Google Scholar 

  • Chang, J. L. C., and Kwak, D. (1984). On the method of pseudocompressibility for numerically solving incompressible flows. AIM Paper 84–252.

    Google Scholar 

  • Chang, Y.C., Hou, T.Y., Merriman, B. and Osher S. (1996). A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows. Journal of Computational Physics. 124: 449–464.

    Article  MATH  MathSciNet  Google Scholar 

  • Choi, D., and Merkle, C. L. (1985). Application of time-iterative schemes to incompressible flow. AIM Journal. 23: 1519–1524.

    MathSciNet  Google Scholar 

  • Chorin, J. (1967). A numerical method for solving incompressible viscous problems. Journal of Computational Physics. 2: 12–26.

    Article  MATH  Google Scholar 

  • Cristini, V., Blawzdziewicz, J. and Loewenberg M. (2001). An Adaptive Mesh Algorithm for Evolving Surfaces: Simulations of Drop Breakup and Coalescence. Journal of Computational Physics. 168: 445–463.

    Article  MATH  Google Scholar 

  • Demirdzic, I., and Peric, M. (1988). Space conservation law in finite volume calculations of fluid flow, International Journal for Numerical Methods in Fluids. 8: 1037–1050.

    Article  MATH  MathSciNet  Google Scholar 

  • Demirdzic, I., and Peric, M. (1990). Finite volume method for prediction of fluid flow in arbitrary shaped domains with moving boundaries. International Journal for Numerical Methods in Fluids. 10: 771–790.

    Article  MATH  Google Scholar 

  • Drikakis, D., and Tsangaris, S. (1991). An implicit characteristics flux averaging scheme for the Euler equations for real gases. International Journal for Numerical Methods in Fluids, 12: 771–776.

    Article  Google Scholar 

  • Drikakis, D. and Tsangaris, S. (1993). On the solution of the compressible Navier-Stokes equations, using improved flux vector splitting methods. Applied Mathematical Modeling, 17: 282–297.

    Article  MATH  MathSciNet  Google Scholar 

  • Ferziger, J.H., and Peric, M. (1996). Computational Methods for Fluid Dynamics. Springer-Verlag, Heidelberg/Berlin, /new York.

    Book  MATH  Google Scholar 

  • Fortin, M., Peyert, R., and Teman, R. (1971). Resolution numerique des equations de Navier-Stokes pour un fluide incompressible. Journal of Mechanics. 10: 357–390

    MATH  Google Scholar 

  • Gow, B.S. (1973). The influence of vascular smooth muscle on the viscoelastic properties of blood vessels. In Bergel, D.H., ed., Cardiovascular Fluid Dynamics, Academic Press. 2: 65–110.

    Google Scholar 

  • Han, J. and Tryggvason G. (1999). Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Physics of Fluids. 11: 3650–3667.

    Article  MATH  Google Scholar 

  • Harlow, F.H., and Welch, J. E. (1965). Numerical calculation of time dependent viscous incompressible flow with free surface. Physics of fluids. 8: 2182–2189.

    Article  MATH  Google Scholar 

  • Hartwich, M., Hsu, C. H., and Liu, C. H. (1988). Vectorizable implicit algorithms for the flux-difference split, three-dimensional Navier-Stokes equations. Journal of Fluids Engineering. 110: 297–305.

    Article  Google Scholar 

  • Hirt, C.W., and Cook, J.L. (1972). Calculating three-dimensional flows around structures and over rough terrain. Journal of Computational Physics. 10: 324–340.

    MATH  Google Scholar 

  • Hirt, C.W., Nichols, B.D., and Romero, N.C. (1975). SOLA–A numerical solution algorithm for transient fluid flows. In Report No LA 5852. Los Alamos Scientific Laboratory. 1–50.

    Google Scholar 

  • Hou, T.Y., Rosakis, P. and LeFloch, P. (1999). A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics. Journal of Computational Physics. 150: 302–331.

    Article  MATH  MathSciNet  Google Scholar 

  • Kaliakatsos, Ch., and Tsangaris, S. (2000). Motion of deformable drops in pipes and channels using Navier–Stokes equations. Int.1. Num. Meth. Fluids. 34: 609–626.

    Article  MATH  Google Scholar 

  • Kwak, D., Chang, J. L. C., Shanks, S. P., and Chakravarthy, S. R. (1986). A three dimensional incompressible flow solving using primitive variables. AIAA Journal. 24: 390–396.

    Article  MATH  Google Scholar 

  • Luo, X.Y., and Pedley, T.J. (1195). A numerical simulation of steady flow in a 2-D collapsible channel. Journal of Fluids and Structures. 9: 149–174.

    Article  Google Scholar 

  • Luo, X.Y., and Pedley, T.J. (1996). A numerical simulation of unsteady flow in a two-dimensional collapsible channel. Journal of Fluid Mechanics. 314: 191–225.

    Article  MATH  Google Scholar 

  • Luo, X.Y., and Pedley, T.J. (1998). The effects of wall inertia on flow in a two-dimensional collapsible channel. Journal of Fluid Mechanics. 363: 253–280.

    Article  MATH  Google Scholar 

  • Pedley, T.J., and Luo, X.Y. (1998). Modeling flow and oscillations in collapsible tubes. Theoretical and Computational Fluid Dynamics. 10: 277–294.

    Article  MATH  Google Scholar 

  • Mathioulakis, D.S., Pappou, Th., and Tsangaris, S. (1997). An experimental and numerical study of a 90° bifurcation. Fluid Dynamics Research. 19: 1–26.

    Article  Google Scholar 

  • Merkle, C., and Athavale, M.A. (1987). Time accurate unsteady incompressible flow algorithms based on artificial compressibility. AIM Paper 87–1137.

    Google Scholar 

  • Osher, S., and Sethian, J. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics. 79: 12–49.

    Google Scholar 

  • Pappou, Th., and Tsangaris, S. (1997). Development of an artificial compressibility methodology using Flux Vector Splitting. International Journal for Numerical Methods in Fluids. 25: 523–545.

    Article  MATH  Google Scholar 

  • Patel, D.J. (1973). The rheology of large blood vessels. In Bergel, D.H., ed., Cardiovascular Fluid Dynamics, Academic Press. 2: 1–64.

    Google Scholar 

  • Perktold, K., and Rappitsch, K. (1995). Computer Simulation of Arterial Blood Flows. Jaffrin, M.W., and Caro, C.G. NewYork: Plenum Press.

    Google Scholar 

  • Peyret, R., and Taylor, T. D. (1983). Computational Methods for Fluid Flow. New York: Springer.

    Book  MATH  Google Scholar 

  • Rammos, K.St., Koullias, G.J., Pappou, Th.J., Bakas, A.J., Panagopoulos, P.G., and Tsangaris, S.G. (1998). A computer model for the prediction of left epicardial coronary blood flow in normal stetonic and bypassed coronary artery by single or sequential grafts. Cardiovascular Surgery. 6 (6): 635–648.

    Article  Google Scholar 

  • Rizzi, A., and Erikson, L. (1985). Computation of inviscid incompressible flow with rotation. Journal of Fluid Mechanics. 153: 275–312.

    Article  MATH  Google Scholar 

  • Rogers, S. E., and Kwak, D. (1990). Upwind differencing scheme for the time accurate incompressible Navier-Stokes equations. AIM Journal. 28: 253–262.

    MATH  Google Scholar 

  • Soh, W. Y., and Goodrich, J. W. (1988). Unsteady solution of incompressible Navier-Stokes equations. Journal of Computational Physics. 79: 113–134.

    Article  MATH  MathSciNet  Google Scholar 

  • Steger, L., and Kutler, P. (1977). Implicit finite-difference procedures for the computation of vortex wakes. AIM Journal. 15: 581–590.

    MATH  MathSciNet  Google Scholar 

  • Steger, J. L., and Warming, R. F. (1981). Flux vector splitting of the inviscid gasdynamics equations with application to finite difference methods. Journal of Computational Physics. 40: 263–293.

    MATH  MathSciNet  Google Scholar 

  • Sussman, M., Smereka, P. and Osher, S. (1994). A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. Journal of Computational Physics. 114: 146–159.

    Article  MATH  Google Scholar 

  • Tsangaris, S., and Pappou, Th. (1999). Flow investigation in deformable arteries. In Verdonck, P., and Perktold, K., eds., Intro and Extracorporeal Cardiovasvular Fluid Dynamics.WIT Press 291–332.

    Google Scholar 

  • Thomas, L., and Walters, R. W. (1985). Upwind relaxation algorithms for the Navier-Stokes equations. AIM Paper 85–1501-CP.

    Google Scholar 

  • Van Leer, B. (1982). Flux vector splitting for the Euler equations. In Proceedings of the 8th International Conference on Numerical Methods in Fluids. Aachen. Lecture Notes in Physics. 170: 507–512.

    Article  Google Scholar 

  • Zhao, Hong-Kai, Merriman, B., Osher, S. and Wang L. (1998). Capturing the Behavior of Bubbles and Drops Using the Variational Level Set Approach. Journal of Computational Physics. 143: 495–518.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu, J. and Sethian, J.A. (1992). Projection Methods coupled to Level Set Interface Techniques. Journal of Computational Physics. 102: 128–138.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Tsangaris, S., Pappou, T. (2003). Finite Difference and Finite Volume Techniques for the Solution of Navier-Stokes Equations in Cardiovascular Fluid Mechanics. In: Pedrizzetti, G., Perktold, K. (eds) Cardiovascular Fluid Mechanics. International Centre for Mechanical Sciences, vol 446. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2542-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2542-7_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00538-5

  • Online ISBN: 978-3-7091-2542-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics