Computational Models of Arterial Flow and Mass Transport

  • Karl Perktold
  • Martin Prosi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 446)


Numerical simulation of arterial hemodynamics and mass transport have become an important tool in recent years due to the significant advances in numerical mathematics, scientific computation and due to the increased power of computers. Over the past years increasingly more elaborate models have been developed in order to gain a better insight into the physiological processes in the vascular system and the initiation and development of arterial diseases. Hemodynamic factors apparently play an important role in the development of these diseases, and therefore, local arterial flow dynamics, such as flow separation, flow recirculation, low and oscillatory wall shear stress, and the influence on mass transport in the arterial lumen and in the artery wall are subjects of intensive research. Corresponding studies include rheological effects in blood flow resulting from the interactions between blood phases up to the transport processes of macromolecules in the arteries and in the artery wall layers. The problems discussed are mathematically described by systems of coupled nonlinear partial differential equations mostly in large parameter range. The numerical approach uses the finite element method, which is often the most suitable approximation technique due to its high flexibility.


Wall Shear Stress Arterial Flow Artery Wall Filtration Velocity Axial Velocity Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.L., and Malone, D.M. (1974). Mechanism of osmotic flow in porous membranes. Biophys. J. 14: 957–982.CrossRefGoogle Scholar
  2. Back, L.H., Radbill, J.R., and Crawford, D.W. (1977). Analysis of oxygen transport from pulsatile, viscous blood flow to diseased coronary arteries of man. J. Biomechanics 10:763–774.Google Scholar
  3. Bassiouny, H.S., White, S., Glagov, S., Choi, E., Giddens, D.P., and Zarins, C.K. (1992). Anastomotic intimal hyperplasia: mechanical injury or flow induced. J. Vasc. Surg. 15: 708–717.CrossRefGoogle Scholar
  4. Batson, R.C., Sottiurai, V.S., and Craighead, C.C. (1984). Linton patch angioplasty: An adjunct to distal bypass with polytetrafluoroethylene grafts. Ann. Surg. 199: 684–693.CrossRefGoogle Scholar
  5. Böhme, G., and Rubart, L. (1993). Einblick in die theoretische Analyse der Stroemungen viskoelastischer Fluessigkeiten. In Mennicken, R., ed., GA MM Mitteilungen 16: 59–97.Google Scholar
  6. Brezzi, F., and Fortin, M. (1991). Mixed and Hybrid Finite Elements. SSCM n. 5, Springer-Verlag, Berlin.Google Scholar
  7. Brooks, A.N., and Hughes, T.J.R. (1982). Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32: 199–259.CrossRefMATHMathSciNetGoogle Scholar
  8. Caro, C.G., Fitz-Gerald, J.M., and Schroter, R.C. (1971). Atheroma and arterial wall shear: Observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis. In Proc. Roy. Soc. Lond. 177:109–159. Google Scholar
  9. Chien, S., Usami, S., Dellenback, R.J., and Gregersen, M.I. (1970). Shear-dependent deformation of erythrocytes in rheology of human blood. American Journal of Physiology 219: 136–142.Google Scholar
  10. Chorin A. (1968). Numerical solution of the Navier-Stokes equations. Math. Comp. 22: 745–762.CrossRefMATHMathSciNetGoogle Scholar
  11. Cokelet, G.R. (1980). Rheology and hemodynamics. Ann. Rev. Physiol. 42: 311–324.CrossRefGoogle Scholar
  12. Crone, C., and Levitt, D.G. (1984). Capillary permeability to small solutes. In Handbook of Physiology. Microcirculation. The Cardiovascular System. Bethesda, MD: Am. Physiol. Soc., sect. 2, vol. IV, pt. 1, Chapter 8, 411–466.Google Scholar
  13. Curry, F. E. (1984). Mechanics and thermodynamics of transcapillary exchange. In Handbook of Physiology. Microcirculation. The Cardiovascular System. Bethesda, MD: Am. Physiol. Soc., sect. 2, vol. IV, pt. 1, Chapter 8, 309–374.Google Scholar
  14. Cuvelier, C., Segal, A., and van Steenhoven, A.A. (1986). Finite Element Methods and Navier-Stokes Equations. D. Reidel Pulishing Company, Dordrecht/Boston/Lancaster/Tokyo.Google Scholar
  15. Delfino, A., Stergiopulos, N., Moore, Jr., J.E., and Meister, J.-J. (1997). Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomechanics 30: 777–786.CrossRefGoogle Scholar
  16. Donea, J., Giuliani, S., Laval, H., and Quartapelle, L. (1981). Solution of the unsteady Navier-Stokes equations by a finite element projections method. In Taylor, C., and Morgan, K., eds., Computational Techniques in Transient and Turbulent Flow. Pineridge Press, Swansea. 97–132.Google Scholar
  17. Ethier, C.R., Steinman, D.A., Zhang, X., Karpik, S.R., and Ojha, M. (1998). Flow waveform effects on end-to-side anastomotic flow patterns. J. Biomechanics 31: 609–617.CrossRefGoogle Scholar
  18. Fahraeus, R., and Lindquist, T. (1931). The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96: 562–568.Google Scholar
  19. Formaggia, L., Gerbeau, J.-F., Nobile, F., and Quarteroni, A. (2001). On a coupling of 3D and 1D NavierStokes equations for flow problems in compliant vessels. Comp. Methods in Appl. Mech. Engng. 191: 561–582.CrossRefMATHMathSciNetGoogle Scholar
  20. Formaggia, L., and Nobile, F. (1999). A stability analysis for the Arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7: 105–131.MATHMathSciNetGoogle Scholar
  21. Friedman, M.H., Bargeron, C.B., Deters, O.J., Hutchins, G.M., and Mark, F.F. (1987). Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 68: 27–33.CrossRefGoogle Scholar
  22. Friedman, M.H., Deters, O.J., Mark, F.F., Bargeron, C.B., and Hutchins, G.M. (1983). Arterial geometry affects hemodynamics–a potential risk factor for atherosclerosis. Atherosclerosis 46: 225–231.CrossRefGoogle Scholar
  23. Friedman, M.H., and Fry, D.L. (1993). Arterial permeability dynamics and vascular disease. Atherosclerosis 104: 189–194.CrossRefGoogle Scholar
  24. Fry, D.L. (1985). Mathematical models of arterial transmural transport. Am. J Physiol. 248:H240–H263. Fry, D.L. (1987). Mass transport, atherogenesis, and risk. Arteriosclerosis 7: 88–100.CrossRefGoogle Scholar
  25. Fung, Y.C. (1965). Foundations of Solid Mechanics. Prentice-Hall International Series in Dynamics: Prentice-Hall, Inc., Englewood Cliffs, N.J.Google Scholar
  26. Galdi, G.P., Heywood, J.G., and Rannacher, R. (2000). Fundamental Directions in Mathematical Fluid Mechanics. Birkhaeuser Verlag, Basel.CrossRefMATHGoogle Scholar
  27. Gijsen, F.J.H. (1998). Modeling of wall shear stress in large arteries. Thesis, TU-Eindhoven.Google Scholar
  28. Gijsen, F.J.H., Allanic, E., van de Vosse, F.N., and Janssen, J.D. (1999). The influence of the non Newtoniean properties of blood on the flow in large arteries: unsteady flow in a 900 curved tube. J. Biomechanics 32: 705–713.CrossRefGoogle Scholar
  29. Girault, V., and Raviart, P.-A. (1986). Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin Heidelberg New York Tokyo.CrossRefMATHGoogle Scholar
  30. Goldsmith, H.L, and Marlow, J. (1979). Flow behaviour of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. Journal of Colloid Interface Science 71: 383–407.CrossRefGoogle Scholar
  31. Gresho, P.M., Chan, S.T., Lee, RL., and Upson, C.D. (1984). A modified finite element method for solving the time-dependent incompressible Navier-Stokes equations. Int. J. Num. Meth. Fluids 4: 557–598.CrossRefMATHGoogle Scholar
  32. Gresho, P.M., and Sani, R.L. (2000). Incompressible Flow and the Finite Element Method, Vol. 2, John Wiley and Sons, Chichester.MATHGoogle Scholar
  33. Gunzberger, M.D. (1989). Finite Element Methods for Viscous Incompressible Flows, A Giude to Theory, Practice and Algorithms. Academic Press Inc., San Diego.Google Scholar
  34. Hofer, M. (1998). Numerische Simulation von Multiphasenstroemungen und Anwendungen auf die Blutstroemung. Dissertation, TU-Graz.Google Scholar
  35. Hofer, M., and Perktold, K. (1995). Vorkonditionierter konjugierter Gradienten Algorithmus für große schlecht konditionierte unsymmetrische Gleichungssysteme. Suppl. Vol. ZAMM Z. angew. Math. Mech. 75 SII: 641–642.Google Scholar
  36. Hofer, M., and Perktold, K. (1997). Computer simulation of concentrated fluid-particle suspension flows in axisymmetric geometries. Biorheology 34: 261–279.CrossRefGoogle Scholar
  37. Huang, Y., Rumschitzki, D., Chien, S., and Weinbaum, S. (1997). A fiber matrix model for the filtration through fenestral pores in a compressible arterial intima. Am. J. Physiol. 272: H2023 - H2039.Google Scholar
  38. Huang, Z.J., and Tarbell, J.M. (1997). Numerical simulation of mass transfer in porous media of blood vessel walls. Am. J. Physiol. 273: H464 - H477.Google Scholar
  39. Huang, Y., Weinbaum, S., Rumschitzki, D., and Chien, S. (1992). A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima. Advances in Biological Heat and Mass Transfer, HTD-Vol. 231, ASME 1992: 81–92.Google Scholar
  40. Hughes, T.J.R., Liu, W.K., and Zimmermann, T.K. (1991). Lagrangian-Eulerian finite element formulation in incompressible viscous flows. Comput. Methods Appl. Mech. Engrg, 29: 329–349.CrossRefMathSciNetGoogle Scholar
  41. Hughes, T.J.R., Mallet, M., and Mizukami, A. (1986). A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput. Methods Appl. Mech. Engrg. 54: 341–355.CrossRefMATHMathSciNetGoogle Scholar
  42. Joseph, D.D. (1990). Fluid Dynamics of Viscoelastic Liquids. Vol. 84 of Applied Mathematical Science. Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong.Google Scholar
  43. Kamer, G., and Perktold, K. (1998). The influence of flow on the concentration of platelet active substances in the vicinity of mural microthrombi. Computer Methods in Biomechanics and Biomedical Engineering 1: 285–301.CrossRefGoogle Scholar
  44. Karner, G., and Perktold, K. (2000). Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study. J. Biomechanics 33: 709–715.CrossRefGoogle Scholar
  45. Karner, G., Perktold, K., Hofer, M., and Liepsch, D. (1999). Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Computer Methods in Biomechanics and Biomedical Engineering 2: 171–185.CrossRefGoogle Scholar
  46. Karner, G., Perktold, K., and Zehentner, H.P. (2001). Computational modeling of macromolecule transport in the arterial wall. Computer Methods in Biomechanics and Biomedical Engineering 3: 491–504.Google Scholar
  47. Keunings, R. (1989). Simulation of viscoelastic fluid flow. In Tucker III, C.L., ed., Computer Modeling for Polymer Processing. Hanser Publishers, Munich, Vienna, New York. 403–469.Google Scholar
  48. Kissin, M., Kansal, N., Pappas, P.J., DeFouw, D.O., Duran, W.N., and Hobsen, R.W. (2000). Vein interposition cuffs decrease the intimal hyperplastic response of polytetrafluorethylene bypass grafts. J. Vasc. Surg. 31: 69–83.CrossRefGoogle Scholar
  49. Koiter, W.T., and Simmonds, J.C. (1973). Foundations of shell theory. In Proc. 13th Int. Congress Theor. Appl. Mech. Berlin: Springer-Verlag, 150–176.Google Scholar
  50. Ku, D., Giddens, D.P., Zarins, C.K., and Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Atherosclerosis 5: 293–302.CrossRefGoogle Scholar
  51. Lei, M., Kleinstreuer, C., and Archie, Jr., J.P. (1996). Geometric design improvements for femoral graft-artery junctions mitigating restenosis. J. Biomechanics 29: 1605–1614.Google Scholar
  52. Lemson, M.S., Tordoir, J.H.M., Daemen, M.J.A.P., and Kitslaar, P.J.E.H.M. (2000). Intimal hyperplasia invascular grafts. Eur. J. Vasc. Endovasc. Surg. 19: 336–350.CrossRefGoogle Scholar
  53. Leuprecht, A., and Perktold, K. (2001). Computer simulation of non-Newtonian effects on blood flow in large arteries. Computer Methods in Biomechanics and Biomedical Engineering 4: 149–163.CrossRefGoogle Scholar
  54. Leuprecht, A., Perktold, K., Prosi, M., Berk, T., Trubel, W., and Schima, H. (2001). Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J. Biomechanics 35: 225–236.CrossRefGoogle Scholar
  55. Lever, M.J. (1995). Mass transport through the walls of arteries and veins. In Jaffrin, M.Y., and Caro, C.G., eds., Biological Flow, Plenum Press: New York, 177–197.Google Scholar
  56. Lever, M.J., and Coleman, P.J. (1995). Fractionation of plasma proteins during their passage through blood vessel walls. In Hochmuth, R.M., Langrana, N.A., and Hefzy, M.S., eds., Proc. 1995 Bioengineering Conference, BED-Vol. 29, ASME, New York, 133–134.Google Scholar
  57. Liepsch, D.W., Thurston, G., and Lee, M. (1991). Studies of fluids simulating blood-like rheological properties and applications in models of arterial branches. Biorheology 28: 39–52.Google Scholar
  58. Ma, P., Li, X., and Ku, D.N. (1997). Convective mass transfer at the carotid bifurcation. J. Biomechanics 30: 565–571.CrossRefGoogle Scholar
  59. McIntire, L.V., and Tran-Son Tay, R. (1989). Concentration of materials released from mural platelet aggregates: flow effects. In Yang, W.J., and Chun, J.L, eds., Biomedical Engineering, Hemisphere Publishing Corporation, New York–Washington, 229–245.Google Scholar
  60. Meyer, G., Merval, R., and Tedgui, A. (1996). Effects of pressure-induced stretch and convection on low density lipoprotein and albumin uptake in the rabbit aortic wall. Circ. Res. 79:532–540.Google Scholar
  61. Miller, J.H., Foreman, R.K., Ferguson, L., and Faris, I. (1984). Interposition vein cuff for anastomosis of prosthesis to small artery. Aust. N.Z. J. Surg. 54:283–285.Google Scholar
  62. Nerem, R.M., and Cornhill, J.F. (1980). The role of fluid mechanics in atherogenesis. ASME J. Biomech. Eng. 102: 181–189.Google Scholar
  63. Nobile, F. (2001). Numerical Approximation of Fluid-Structure Interaction Problems with Application to Hemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), Thesis N. 2458.Google Scholar
  64. Nunziato, J.W. (1983). A multiphase mixture theory for fluid-particle flows. In Meyer R.E., ed., The Theory of Dispersed Multiphase Flow. Proc. of an Advanced Seminar Conducted by the Mathematics Research Center, University of Wisconsin-Madison. Academic Press, New York. 191–226.Google Scholar
  65. Ogston, A.G., Preston, B.N., and Wells, J.D. (1973). On the transport of compact particles through solutions of chainpolymers. Proc. R. Soc. London Ser. A 333: 297–316.Google Scholar
  66. Ojha, M. (1994). Wall shear stress temporal gradient and anastomotic intimai hyperplasia. Circ. Res. 74: 1227–1231.CrossRefGoogle Scholar
  67. Osenberg, H.P. (1991). Simulation des arteriellen Blutflusses - Ein allgemeines Modell mit Anwendung auf das menschliche Hirngefäßsystem. Dissertation, ETH Zürich 9342, IBT Zürich.Google Scholar
  68. Penn, M.S., Saidel, G.M., and Chisolm, G.M. (1994). Relative significance of endothelium and internal elastic lamina in regulating the entry of macromolecules into arteries in vivo. Circ. Res. 74: 74–82.CrossRefGoogle Scholar
  69. Perktold, K. (1987). On numerical simulation of three-dimensional physiological flow problems. Ber. Math.-Stat. Sektion, Forschungsges. Johanneum Graz, Nr. 280, Graz.Google Scholar
  70. Perktold, K., and Hofer, M. (1999). Mathematical modelling of flow effects and transport processes in arterial bifurcation models. In Xu, X.Y., and Collins, M.W., eds., Haemodynamics of Arterial Organs. WIT Press. Southampton, Boston. 43–84.Google Scholar
  71. Perktold, K., Hofer, M., Rappitsch, G., Low, M., Kuban, B.D., and Friedman, M.H. (1998). Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomechanics 31: 217–228.CrossRefGoogle Scholar
  72. Perktold, K., and Karner, G. (2001). Computational principles and models of hemodynamics. In Hennerici, M., and Meairs, S., eds., Cerebrovascular Ultrasound-Theory, Practice and Future Developments. Cambridge University Press, 63–76.Google Scholar
  73. Perktold, K., Leuprecht, A., Prosi, M., Berk, T., Czerny, M., Trubel, W., and Schima, H. (2002). Fluid dynamics, wall mechanics and oxygen transfer in peripheral bypass anastomoses. Annals of Biomedical Engineering 30: 447–460.CrossRefGoogle Scholar
  74. Perktold, K., Prosi, M., Leuprecht, A., Ding, Z., and Friedman, M.H. (2001). Curvature effects on bifurcating coronary artery flow. BED-Vol. 50, 2001 Bioengineering Conference, ASME 2001: 69–70.Google Scholar
  75. Perktold, K., and Rappitsch, G. (1994). Mathematical modeling of local arterial flow and vessel mechanics. In Crolet, J.M., and Ohayon, R., eds., Computational methods for fluid-structure interaction. Pitman Research Notes in Mathematics Series 306, Longman Scientific and Technical, J. Wiley and Sons, New York. 230–245.Google Scholar
  76. Perktold, K., Resch, M., and Florian, H. (1991). Pulsatile non-Newtonian flow characteristics in a threedimensional human carotid bifurcation model. Jounal ofBiomechanical Engineering 113: 464–475.CrossRefGoogle Scholar
  77. Phillips, W., and Deutsch, S. (1975). Towards a constitutive equation for blood. Biorheology 12: 383–389.MathSciNetGoogle Scholar
  78. Quarteroni, A., and Formaggia, L. (2002). Mathematical Modelling and Numerical Simulation of the Cardiovascular System. Modeling and Scientific Computing, MOX-Report No. 01.Google Scholar
  79. Quarteroni, A., Ragni, S., and Veneziani, A. (2001). Coupling between lumped and distributed models for blood problems. Computing and Visualisation in Science 4: 111–124.CrossRefMATHMathSciNetGoogle Scholar
  80. Quarteroni, A., and Valli, A. (1994). Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  81. Quarteroni, A., Veneziani, A., and Zunino, P. (2002). Mathematical and numerical modelling of solute dynamics in blood flow and arterial walls. SIAM J. Numer. Anal. 39: 1488–1511.CrossRefMathSciNetGoogle Scholar
  82. Rappitsch, G., and Perktold, K. (1996). Computer simulation of convective diffusion processes in large arteries. J. Biomechanics 29: 207–215.CrossRefGoogle Scholar
  83. Rappitsch, G., Perktold, K., and Pernkopf, E. (1997). Numerical modelling of shear-dependent mass transfer in large arteries. Int. J. Numer. Meth. Fluids 25: 847–857.CrossRefMATHGoogle Scholar
  84. Reddy, J.N., and Gartling, D.K. (1994). The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC Press, Boca Raton.MATHGoogle Scholar
  85. Reneman, R.S., van Merode, T., Hick, P.J.J., and Hoeks, A.P.G. (1985). Flow velocity pattern in and distensibility of the carotid artery bulb in subjects of various ages. Circulation 71: 500–509.CrossRefGoogle Scholar
  86. Santamaria, A., Siegel, J.M., and Moore Jr., J.E. (1998). Computational analysis of flow in a curved tube model of the coronary arteries: Effects of time-varying curvature. Annals of Biomedical Engineering 26: 944–954.CrossRefGoogle Scholar
  87. Schmid-Schoenbein, H., Grunau, G., and Braeuer, H. (1980). Exempla haemorheologica. Albert-Roussel Pharma GmbH.Google Scholar
  88. Segre, G., and Silberberg, A. (1962). Behaviour of macroscopic rigid sheres in Poiseulle flow, parts 1 and 2. Journal of Fluid Mechanics 12: 115–157.CrossRefGoogle Scholar
  89. Sharp, M.K., Thurston, G.B., and Moore, Jr., J.E. (1996). The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes. Biorheology 33: 185–208.CrossRefGoogle Scholar
  90. Sottiurai, V.S., Yao, J.S.T., Baston, R.C., Sue, S.L., Jones, R., and Nakamura, Y.A. (1989). Distal anastomotic intimal hyperplasia: histological character and biogenesis. Ann. Vasc. Surg. 3: 26–33.CrossRefGoogle Scholar
  91. Shyy, W., Thakur, S., Ouyang, H., Liu, J., and Blosch, E. (1997). Computational techniques for complex transport phenomena. Cambridge University Press, Cambridge, UK.Google Scholar
  92. Tanner, R.I. (1985). Engineering Rheology. Clarendon Press, Oxford.MATHGoogle Scholar
  93. Tarbell, J.M. (1993). Bioengineering studies of the endothelial transport barrier. Bioengineering Science News, BMES Bulletin 17: 35–39.Google Scholar
  94. Tarbell, J.M., Lever, M.J., and Caro, C.G. (1988). The effect of varying albumin concentration on the hydraulic conductivity of the rabbit common carotid artery. Microvascular Research 35: 204–220.CrossRefGoogle Scholar
  95. Taylor, R.S., Loh, A., McFarland, R.J., Cox, M., and Chester, J.F. (1992). Improved technique for polytetrafluoroethylene bypass grafting: long-term results using anastomotic vein patches. Br. J. Surg. 79: 348–354.CrossRefGoogle Scholar
  96. Temam, R. (1984). Navier-Stokes Equations, Theory and Numerical Analysis. North Holland, Amsterdam. Thurston, G.B. (1979). Rheological parameters for the viscosity, viscoelasticity and thixotropy of blood. Biorheology 16: 149–162.Google Scholar
  97. Trubel, W., Schima, H., Moritz, A., Raderer, F., Windisch, A., Ullrich, R., Windberger, U., Losert, U., and Polterauer, P. (1995). Compliance mismatch and formation of distal anastomotic intimal hyperplasia in externally stiffened and lumen-adapted venous grafts. Eur. J. Vasc. Endovasc. Surg. 10: 1–9.CrossRefGoogle Scholar
  98. Van Merode, T., Hick, P.J.J., Hoeks, A.P.G., Rahn, K.H., and Reneman, R.S. (1988). Carotid artery wall properties in normotensive and borderline hypertensive subjects of various ages. Ultrasound in Med. and Biol. 14: 563–569.CrossRefGoogle Scholar
  99. Wada, S., and Karino, T. (2000). Computational study on LDL transfer from flowing blood to arterial walls. In Yamaguchi, T., ed., Clinical Application of Computational Mechanics to the Cardiovascular System. Springer-Verlag, Tokyo. 157–173.CrossRefGoogle Scholar
  100. Walitza, E. (1990). Zum nicht-Newtonschen Flieszverhalten von Blut und einigen damit verbundenen Konsequenzen fuer laminare Stroemungen. Dissertation, Universitaet Stuttgart.Google Scholar
  101. Weydahl, E.S., and Moore, Jr., J.E. (2001). Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model. J.Biomechanics 34: 1189–1196.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Karl Perktold
    • 1
  • Martin Prosi
    • 1
  1. 1.Institute of MathematicsGraz University of TechnologyGrazAustria

Personalised recommendations