Arterial and Venous Fluid Dynamics

  • Timothy J. Pedley
Part of the International Centre for Mechanical Sciences book series (CISM, volume 446)


The majority of these lecture notes are taken from the author’s chapter “Blood flow in arteries and veins”, in the book “Perspectives in Fluid Mechanics” edited by G K Batchelor, H K Moffatt and M G Worster, published by Cambridge University Press, 2000. Other parts come from his own book, Pedley (1980).


Wall Shear Stress Steady Flow Poiseuille Flow Transmural Pressure Elastic Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, M. 1934 Strömung in gekrümmten Rohren. Z. Angew. Math. Mech. 14, 257–75.CrossRefMATHGoogle Scholar
  2. Agrawal, Y., Talbot, L. and Gong, K. 1978 Laser anemometer study of flow development in curved circular pipes. J. Fluid Mech. 85, 497–518.CrossRefGoogle Scholar
  3. Badeer, H. S. and Rietz, R. R. 1979 Vascular hemodynamics: deep-rooted misconceptions and misnomers. Cardiology 64, 197–207.CrossRefGoogle Scholar
  4. Berger, S. A., Talbot, L. and Yao, L. S. 1983 Flow in curved pipes. Ann. Rev. Fluid Mech. 15, 461–512.CrossRefGoogle Scholar
  5. Bertram, C. D. 1986 Unstable equilibrium behaviour in collapsible tubes. J. Biomech. 19, 61–69.CrossRefGoogle Scholar
  6. Bertram, C. D., Raymond, C. J. and Pedley, T. J. 1990 Mapping of instabilities during flow through collapsed tubes of differing length. J. Fluids and Structures 4, 125–154.CrossRefGoogle Scholar
  7. Bertram, C. D., Raymond, C. J. and Pedley, T. J. 1991 Application of nonlinear dynamics concepts to the analysis of self-excited oscillations of a collapsible tube conveying a flow. J. Fluids and Structures 5, 391–426.CrossRefGoogle Scholar
  8. Bogdanova, E. V. and Ryzhov, O. S. 1983 Free and induced oscillations in Poiseuille flow. Q. J. Mech. Appl. Math. 36, 271–287.CrossRefGoogle Scholar
  9. Bonis, M. and Ribreau, C. 1978 Etude de quelques propriétés de l’écoulement dans une conduite collabable. La Houille Blanche 3/4, 165–173.Google Scholar
  10. Borgas, M. S. 1986 Waves, singularities and non-uniqueness in channel and pipe flows. PhD Thesis, Cambridge University.Google Scholar
  11. Borgas, M. S. and Pedley, T. J. 1990 Non-uniqueness and bifurcation in annular and planar channel flow. J. Fluid Mech. 214, 229–250.CrossRefMATHMathSciNetGoogle Scholar
  12. Brecher, G. A. 1952 Mechanism of venous flow under different degrees of aspiration. Am. J. Physiol. 169, 423–433.Google Scholar
  13. Brook, B. S. 1997 The effect of gravity on the haemodynamics of the giraffe jugular vein. PhD Thesis, University of Leeds.Google Scholar
  14. Brower, R. W. and Noordergraaf, A. 1973 Pressure flow characteristics of collapsible tubes: a reconciliation of seemingly contradictory results. Ann. Biomed. Eng. 1, 333–335.CrossRefGoogle Scholar
  15. Bujurke, N. M., Pedley, T. J. and Tutty, O. R. 1996 Comparison of series expansion and finitedifference computations of internal flow separation. Phil. Trans R. Soc. Lond. A 354, 1751–1773.CrossRefMATHGoogle Scholar
  16. Cancelli, C. and Pedley, T. J. 1985 A separated flow model for collapsible tube oscillations. J. Fluid Mech. 157, 375–404.CrossRefGoogle Scholar
  17. Caro, C. G., Fitz-Gerald, J. M. and Schroter, R. C. 1971 Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B 177, 109–159.Google Scholar
  18. Caro, C. G., Pedley, T. J., Schroter, R. C. and Seed, W. A. 1978 The Mechanics of the Circulation,Oxford University Press.Google Scholar
  19. Carton, T. W., Dainauskas, J. and Clark, J. W. 1962 Elastic properties of single elastic fibres. J. Appl. Physiol. 17, 547–51.Google Scholar
  20. Cheng, K. C. and Mok, S. Y. 1986 In Fluid Control and Measurement, vol. 2 (ed. M. Harada), pp. 765773. New York: Pergamon.Google Scholar
  21. Collins, W. M. and Dennis, S. C. R. 1975 The steady motion of a viscous fluid in a curved tube. Q. Jl. Mech. appl. Math. 28, 133–156.Google Scholar
  22. Conrad, W. A. 1969 Pressure-flow relationships in collapsible tubes. Ieee. Trans. Bio-Med. Eng. Bme 16, 284–295.Google Scholar
  23. Danaky, D. T. and Ronan, J. A. 1974 Cervical venous hums in patients on chronic hemodialysis. New Engl. J Med. 291, 237–239.CrossRefGoogle Scholar
  24. Daskopoulos, P. and Lenhoff, A. M. 1989 Flow in curved ducts: bifurcation structure for stationary ducts. J Fluid Mech. 203, 125–148.CrossRefMathSciNetGoogle Scholar
  25. Dean, W. R. 1927 Note on the motion of fluid in a curved pipe. Phil. Mag. Ser. 7 4, 208–223. Dean, W. R. 1928 The streamline motion of fluid in a curved pipe. Phil. Mag. Ser. 7 5, 673–695.Google Scholar
  26. Dennis, S. C. R. and NG, M. 1982 Dual solutions for steady laminar flow through a curved tube. Q.11. Mech. appl. Math. 35, 305–324.CrossRefMATHGoogle Scholar
  27. Elad, D. and Kamm, R. D. 1989 Parametric evaluation of forced expiration using a numerical model. Asme J. Biomech. Eng. 111, 192–199.CrossRefGoogle Scholar
  28. Elzinga, G. and Westerhof, N. 1991 Matching between ventricle and arterial load: an evolutionary process. Circulation Res. 68, 1495–1500.CrossRefGoogle Scholar
  29. Friedman, M. H. 1993 Atherosclerosis research using vascular flow models: from 2-D branches to compliant replicas. Asme J. Biomech. Eng. 115, 595–601.CrossRefGoogle Scholar
  30. Fry, D. L. 1958 Theoretical considerations of the bronchial pressure-flow-volume relationships with particular reference to the maximum expiratory flow volume curve. Phys. Med. Biol. 3, 174–194.CrossRefGoogle Scholar
  31. Fry, D. L. 1987 Mass transport, atherogenesis and risk. Arteriosclerosis 7, 88–100.CrossRefGoogle Scholar
  32. Fukushima, T. and Azuma, T. 1982 The horseshoe vortex: a secondary flow generated in arteries with stenosis, bifurcations and branchings. Biorheology 19, 143–154.Google Scholar
  33. Giddens, D. P., Zarins, C. K. and Glagov, S. 1993 The role of fluid dynamics in the localisation and detection of atherosclerosis. Asme J. Biomech. Eng. 115, 588–594.CrossRefGoogle Scholar
  34. Goetz, R. H. and Keen, E. N. 1957 Some aspects of the cardiovascular system in the giraffe. Angiology 8, 542–564.Google Scholar
  35. Goetz, R. H., Warren, J. V., Gaver, O. H., Patterson, J. L., Doyle, J. T., Keen, E. N. and Mcgregor, M. 1960 Circulation of the giraffe. Circulation Res. 8, 1049–1058.Google Scholar
  36. Griffiths, D. J. 1971 Hydrodynamics of male micturition I. Theory of steady flow through elastic-walled tubes. Med. Biol. Eng. 9, 581–588.Google Scholar
  37. Guyton. A. C. 1962 `Venous Return’: Handbook of Physiology, Section 2, Circulation, Vol. H ed. by W. F. Hamilton and P. Dow, American Physiological Society, Washington D. C.Google Scholar
  38. Hargens, A. R., Millard, R. W., Pettersson, K. and Johansen, K. 1987 Gravitational haemodynamics and oedema prevention in the giraffe. Nature 329, 59–60.CrossRefGoogle Scholar
  39. Heil, M. 1997 Stokes flow in collapsible tubes: computation and experiment. J. Fluid Mech. 353, 285–312. Hicks, J. W. and Badeer, H. S. 1989 Siphon mechanism in collapsible tubes: application to circulation of the giraffe head. Am. J. Physiol. 256, R567 — R571.Google Scholar
  40. ITo, H. 1969 Laminar flow in curved pipes. Z. Angew. Math. Mech. 49, 653–63.CrossRefMATHGoogle Scholar
  41. Jan, D. L., Kamm, R. D. and Shapiro, A. H. 1983 Filling of partially collapsed compliant tubes. Asme J. Biomech. Eng. 105, 12–19.CrossRefGoogle Scholar
  42. Jensen, O. E. 1990 Instabilities of flow in a collapsed tube. J. Fluid Mech. 220, 623–659.CrossRefMATHMathSciNetGoogle Scholar
  43. Jensen, O. E. 1992 Chaotic oscillations in a simple collapsible-tube model. Asme J. Biomech. Eng. 114, 55–59.CrossRefGoogle Scholar
  44. Jensen, O. E. and Pedley, T. J. 1989 The existence of steady flow in a collapsed tube. J. Fluid Mech. 206, 339–374.CrossRefMATHMathSciNetGoogle Scholar
  45. Kamm, R. D. and Pedley, T. J. 1989 Flow in collapsible tubes: a brief review. Asme J. Biomech. Eng. 111, 177–179.CrossRefGoogle Scholar
  46. Kamm, R. D. and Shapiro, A. H. 1979 Unsteady flow in a collapsible tube subjected to external pressure or body forces. J. Fluid Mech. 95, 1–78.CrossRefMATHGoogle Scholar
  47. Karino, T., KwOng, H. H. M. and Goldsmith, H. L. 1979 Particle flow behaviour in models of branching vessels. I. Vortices in 900 T-junctions. Biorheology 16, 231–248.Google Scholar
  48. Korteweg, D. J. 1878 Ober die Fortpflanzungesgeschwindigkeit des Schalles in elastischen Rohren’. Ann. Phys. Chem. Ser 3, 5, 525–542.Google Scholar
  49. Ku, D. N. 1988 A review of carotid duplex scanning. Echocardiography 5, 53–69.CrossRefGoogle Scholar
  50. Ku, D. N., Giddens, D. P., Zarins, C. K. and Glagov, S. 1985 Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5, 293–302.CrossRefGoogle Scholar
  51. Lambert, R. K. 1989 A new computational model for expiratory flow from nonhomogeneous human lungs. Asme J. Biomech. Eng. 111, 200–205.CrossRefGoogle Scholar
  52. Lee, C. S. F. and Talbot, L. 1979 A fluid-mechanical study of the closure of heart valves. J. Fluid Mech. 91, 41–63.CrossRefGoogle Scholar
  53. Lighthill, J. 1975 Mathematical Biofluiddynamics,Soc. Ind. Appl. Math, Philadelphia. Lighthill, J. 1978 Waves in Fluids,Cambridge University Press.Google Scholar
  54. Lowe, T. W. and Pedley, T. J. 1995 Computation of Stokes flow in a channel with a collapsible segment. J. Fluids and Structures 9, 885–905.CrossRefGoogle Scholar
  55. Luo, X. -Y. and Pedley, T. J. 1996 A numerical simulation of steady flow in a 2-D collapsible channel. J. Fluids and Structures 9, 149–174.CrossRefGoogle Scholar
  56. Luo, X. -Y. and Pedley, T. J. 1996 A numerical simulation of unsteady flow in a 2-D collapsible channel. J. Fluid Mech. 314, 191–225. (corrigendum 324, 408–409.)Google Scholar
  57. Lutz, R. J., Cannon, J. N., Bischoff, K. B. and Dedrick, R. L. 1977 Wall shear stress distribution in a model canine artery during steady flow. Circulation Res. 41, 391–399.CrossRefGoogle Scholar
  58. Lyne, W. H. 1971 Unsteady viscous flow in a curved pipe. J. Fluid Mech. 45, 13–31.CrossRefMATHGoogle Scholar
  59. Mcconalogue, D. J. and Srivastava, R. S. 1968 Motion of fluid in a curved tube. Proc. R. Soc. Lond. A307, 37–53.CrossRefMATHGoogle Scholar
  60. Mcdonald, D. A. 1974 Blood Flow in Arteries(2nd edn.)London: Edward Arnold.Google Scholar
  61. Mitchell, G. and Skinner, J. D. 1993 How giraffe adapt to their extraordinary shape. Trans. R. Soc. S. Africa 48, 207–218.CrossRefGoogle Scholar
  62. Moens, A. I. 1878 Die Pulskurve.Brill,Leiden.Google Scholar
  63. Moreno, A. H., Katz, A. I., Gold, L. D. and Reddy, R. V. 1970 Mechanics of distension of dog veins and other very thin-walled tubular structures. Circulation Res. 27, 1069–1080.CrossRefGoogle Scholar
  64. Olson, R. M. 1968 Aortic blood pressure and velocity as a function of time and position. J. Appl. Physiol. 24, 563–569.Google Scholar
  65. Pedley, T. J. 1980 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press. Pedley, T. J. 1987 How giraffes prevent oedema. Nature 329, 13–14.Google Scholar
  66. Pedley, T. J. 1992 Longitudinal tension variation in collapsible channels: a new mechanism for the breakdown of steady flow. Asme J. Biomech. Eng. 114, 60–67.CrossRefGoogle Scholar
  67. Pedley, T. J. 1995 High Reynolds number flow in tubes of complex geometry with application to wall shear stress in arteries. In: Biological Fluid Dynamics, ed. by C. P. Ellington and T. J. Pedley, Soc. Exp. Biol. Symposium no. 49, pp. 219–241.Google Scholar
  68. Pedley, T. J., Brook, B. S. and Seymour, R. S. 1996 Blood pressure and flow rate in the giraffe jugular vein. Phil. Trans. R. Soc. Lond. B 351, 855–866.CrossRefGoogle Scholar
  69. Pedley, T. J. and Luo, X.-Y. 1998 Models of flow and oscillations in collapsible tubes. Theor. and Comput. Fluid Dyn. 10, 277–294.CrossRefMATHGoogle Scholar
  70. Pedley, T. J., Schroter, R. C. and Sudlow, M. F. 1977 Gas flow and mixing in the airways. In: Bioengineering aspects of the lung, ed. by J. B. West. Marcel Dekker, New York, pp. 163–265.Google Scholar
  71. Pedley, T. J. and Stephanoff, K. D. 1985 Flow along a channel with a time-dependent indentation in one wall: the generation of vorticity waves. J. Fluid Mech. 160, 337–367.CrossRefGoogle Scholar
  72. Permutt, S., Bromberger-Barnea, B. and Bane, H. N. 1963 Hemodynamics of collapsible vessels with tone. The vascular waterfall. J. Appl. Physiol. 18, 924–932.Google Scholar
  73. Prandtl, L. 1952 The Essentials of Fluid Mechanics 3rd edn., translated. Glasgow: Blackie and Son.Google Scholar
  74. Ralph, M. E. and Pedley, T. J. 1988 Flow in a channel with a moving indentation. J. Fluid Mech. 190, 87–112.CrossRefGoogle Scholar
  75. Ralph, M. E. and Pedley, T. J. 1990 Flow in a channel with a time-dependent indentation in one wall. Asme J. Fluids Eng. 112, 468–475.CrossRefGoogle Scholar
  76. Rast, M. P. 1994 Simultaneous solution of the Navier-Stokes and elastic membrane equations by a finite-element method. Int. J. Numer. Methods. Fluids 19, 1115–1135.CrossRefMATHGoogle Scholar
  77. Reneau, L. R., Johnston, J. P. and Kline, S. J. 1967 Performance and design of straight, two-dimensional diffusers. Asme J. Basic Eng. 89, 141–150.CrossRefGoogle Scholar
  78. Schroter, R. C. and Sudlow, M. F. 1969 Flow patterns in models of the human bronchial airways. Respir. Physiol. 7, 341–355.CrossRefGoogle Scholar
  79. Secomb, T. W. 1979 Flows in tubes and channels with indented and moving walls. PhD Thesis, Cambridge University.Google Scholar
  80. Shapiro, A. H. 1977a Steady flow in collapsible tubes. Asme J. Biomech. Eng. 99, 126–147.CrossRefGoogle Scholar
  81. Shapiro, A. H. 1977b Physiologic and medical aspects of flow in collapsible tubes. Proc. 6th Can. Congr. Appl. Mech., 883–906.Google Scholar
  82. Singh, M. P. 1974 Entry flow in a curved pipe. J. Fluid Mech. 65, 517–39.CrossRefMATHGoogle Scholar
  83. Smith, F. T. 1976a Flow through constricted or dilated pipes and channels: Part I. Q. J. Mech. Appl. Math. 29, 343–364.CrossRefMATHGoogle Scholar
  84. Smith, F. T. 1976b Flow through constricted or dilated pipes and channels: Part II. Q. J. Mech. Appl. Math. 29, 365–376.CrossRefMATHGoogle Scholar
  85. Smith, F. T. 1975 Pulsatile flow in curved pipes. J. Fluid Mech. 71, 15–42.CrossRefMATHGoogle Scholar
  86. Sobey, I. J. 1985 Observation of waves during oscillatory channel flow. J. Fluid Mech. 151, 395–426. Taylor, C. A., Hughes, T. J. R. and Zarins, C. K. 1996 Computational investigations in vascular disease. Computers in Physics 10, 224–232.Google Scholar
  87. Tutty, O. R. and Pedley, T. J. 1993 Oscillatory flow in a stepped channel. J. Fluid Mech. 247, 179–204. Walburn, F. J. and Stein, P. D. 1980 Flow in a symmetrically branched tube simulating the aortic bifurcation: the effects of unevenly distributed flow. Ann. Biomed. Eng. 8, 159–173.Google Scholar
  88. Weinbaum, S. and Chien, S. 1993 Lipid transport aspects of atherogenesis. Asme J. Biomech. Eng. 115, 602–610.CrossRefGoogle Scholar
  89. White, C. M. 1929 Streamline flow through curved pipes. Proc. R. Soc. Lond. A 123, 645–663. Womersley, J. R. 1955 Method for calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. Lond. 127, 553–563.Google Scholar
  90. Womersley, J. R. 1957 The mathematical analysis of the arterial circulation in a state of oscillatory motion. Wright Air Development Center, Tech. Rep. Wadc-TR 56–614.Google Scholar
  91. Yanase, S., Goto, N. and Yamamoto, K. 1999 Dual solutions of the flow through a curved tube. Fluid Dyn. Res. 5, 191–201.CrossRefGoogle Scholar
  92. Young, T. 1809 On the functions of the heart and arteries. Phil. Trans. R. Soc. Lond. 99, 1–31.CrossRefGoogle Scholar
  93. Yuan, F., Chien, S. and Weinbaum, S. 1991 A new view of convective-diffusive transport processes in the arterial intima. Asme J. Biomech. Eng. 113, 314–329.CrossRefGoogle Scholar
  94. Zarins, C. K., Giddens, D. P., Bharadvaj, B. K., Sottiurai, V. S., Mabon, R. F. and Glagov, S. 1983 Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Res. 53, 502–514.Google Scholar
  95. Zeller, H., Talukder, N. and Lorenz, J. 1970 Model studies of pulsating flow in arterial branches and wave propagation in blood vessels. In Fluid Dynamics of Blood Circulation and Respiratory Flow, Agard Conference Proceedings no 65.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Timothy J. Pedley
    • 1
  1. 1.DAMTP, CMSCambridgeUK

Personalised recommendations