Skip to main content

Arterial and Venous Fluid Dynamics

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 446))

Abstract

The majority of these lecture notes are taken from the author’s chapter “Blood flow in arteries and veins”, in the book “Perspectives in Fluid Mechanics” edited by G K Batchelor, H K Moffatt and M G Worster, published by Cambridge University Press, 2000. Other parts come from his own book, Pedley (1980).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, M. 1934 Strömung in gekrümmten Rohren. Z. Angew. Math. Mech. 14, 257–75.

    Article  MATH  Google Scholar 

  • Agrawal, Y., Talbot, L. and Gong, K. 1978 Laser anemometer study of flow development in curved circular pipes. J. Fluid Mech. 85, 497–518.

    Article  Google Scholar 

  • Badeer, H. S. and Rietz, R. R. 1979 Vascular hemodynamics: deep-rooted misconceptions and misnomers. Cardiology 64, 197–207.

    Article  Google Scholar 

  • Berger, S. A., Talbot, L. and Yao, L. S. 1983 Flow in curved pipes. Ann. Rev. Fluid Mech. 15, 461–512.

    Article  Google Scholar 

  • Bertram, C. D. 1986 Unstable equilibrium behaviour in collapsible tubes. J. Biomech. 19, 61–69.

    Article  Google Scholar 

  • Bertram, C. D., Raymond, C. J. and Pedley, T. J. 1990 Mapping of instabilities during flow through collapsed tubes of differing length. J. Fluids and Structures 4, 125–154.

    Article  Google Scholar 

  • Bertram, C. D., Raymond, C. J. and Pedley, T. J. 1991 Application of nonlinear dynamics concepts to the analysis of self-excited oscillations of a collapsible tube conveying a flow. J. Fluids and Structures 5, 391–426.

    Article  Google Scholar 

  • Bogdanova, E. V. and Ryzhov, O. S. 1983 Free and induced oscillations in Poiseuille flow. Q. J. Mech. Appl. Math. 36, 271–287.

    Article  Google Scholar 

  • Bonis, M. and Ribreau, C. 1978 Etude de quelques propriétés de l’écoulement dans une conduite collabable. La Houille Blanche 3/4, 165–173.

    Google Scholar 

  • Borgas, M. S. 1986 Waves, singularities and non-uniqueness in channel and pipe flows. PhD Thesis, Cambridge University.

    Google Scholar 

  • Borgas, M. S. and Pedley, T. J. 1990 Non-uniqueness and bifurcation in annular and planar channel flow. J. Fluid Mech. 214, 229–250.

    Article  MATH  MathSciNet  Google Scholar 

  • Brecher, G. A. 1952 Mechanism of venous flow under different degrees of aspiration. Am. J. Physiol. 169, 423–433.

    Google Scholar 

  • Brook, B. S. 1997 The effect of gravity on the haemodynamics of the giraffe jugular vein. PhD Thesis, University of Leeds.

    Google Scholar 

  • Brower, R. W. and Noordergraaf, A. 1973 Pressure flow characteristics of collapsible tubes: a reconciliation of seemingly contradictory results. Ann. Biomed. Eng. 1, 333–335.

    Article  Google Scholar 

  • Bujurke, N. M., Pedley, T. J. and Tutty, O. R. 1996 Comparison of series expansion and finitedifference computations of internal flow separation. Phil. Trans R. Soc. Lond. A 354, 1751–1773.

    Article  MATH  Google Scholar 

  • Cancelli, C. and Pedley, T. J. 1985 A separated flow model for collapsible tube oscillations. J. Fluid Mech. 157, 375–404.

    Article  Google Scholar 

  • Caro, C. G., Fitz-Gerald, J. M. and Schroter, R. C. 1971 Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B 177, 109–159.

    Google Scholar 

  • Caro, C. G., Pedley, T. J., Schroter, R. C. and Seed, W. A. 1978 The Mechanics of the Circulation,Oxford University Press.

    Google Scholar 

  • Carton, T. W., Dainauskas, J. and Clark, J. W. 1962 Elastic properties of single elastic fibres. J. Appl. Physiol. 17, 547–51.

    Google Scholar 

  • Cheng, K. C. and Mok, S. Y. 1986 In Fluid Control and Measurement, vol. 2 (ed. M. Harada), pp. 765773. New York: Pergamon.

    Google Scholar 

  • Collins, W. M. and Dennis, S. C. R. 1975 The steady motion of a viscous fluid in a curved tube. Q. Jl. Mech. appl. Math. 28, 133–156.

    Google Scholar 

  • Conrad, W. A. 1969 Pressure-flow relationships in collapsible tubes. Ieee. Trans. Bio-Med. Eng. Bme 16, 284–295.

    Google Scholar 

  • Danaky, D. T. and Ronan, J. A. 1974 Cervical venous hums in patients on chronic hemodialysis. New Engl. J Med. 291, 237–239.

    Article  Google Scholar 

  • Daskopoulos, P. and Lenhoff, A. M. 1989 Flow in curved ducts: bifurcation structure for stationary ducts. J Fluid Mech. 203, 125–148.

    Article  MathSciNet  Google Scholar 

  • Dean, W. R. 1927 Note on the motion of fluid in a curved pipe. Phil. Mag. Ser. 7 4, 208–223. Dean, W. R. 1928 The streamline motion of fluid in a curved pipe. Phil. Mag. Ser. 7 5, 673–695.

    Google Scholar 

  • Dennis, S. C. R. and NG, M. 1982 Dual solutions for steady laminar flow through a curved tube. Q.11. Mech. appl. Math. 35, 305–324.

    Article  MATH  Google Scholar 

  • Elad, D. and Kamm, R. D. 1989 Parametric evaluation of forced expiration using a numerical model. Asme J. Biomech. Eng. 111, 192–199.

    Article  Google Scholar 

  • Elzinga, G. and Westerhof, N. 1991 Matching between ventricle and arterial load: an evolutionary process. Circulation Res. 68, 1495–1500.

    Article  Google Scholar 

  • Friedman, M. H. 1993 Atherosclerosis research using vascular flow models: from 2-D branches to compliant replicas. Asme J. Biomech. Eng. 115, 595–601.

    Article  Google Scholar 

  • Fry, D. L. 1958 Theoretical considerations of the bronchial pressure-flow-volume relationships with particular reference to the maximum expiratory flow volume curve. Phys. Med. Biol. 3, 174–194.

    Article  Google Scholar 

  • Fry, D. L. 1987 Mass transport, atherogenesis and risk. Arteriosclerosis 7, 88–100.

    Article  Google Scholar 

  • Fukushima, T. and Azuma, T. 1982 The horseshoe vortex: a secondary flow generated in arteries with stenosis, bifurcations and branchings. Biorheology 19, 143–154.

    Google Scholar 

  • Giddens, D. P., Zarins, C. K. and Glagov, S. 1993 The role of fluid dynamics in the localisation and detection of atherosclerosis. Asme J. Biomech. Eng. 115, 588–594.

    Article  Google Scholar 

  • Goetz, R. H. and Keen, E. N. 1957 Some aspects of the cardiovascular system in the giraffe. Angiology 8, 542–564.

    Google Scholar 

  • Goetz, R. H., Warren, J. V., Gaver, O. H., Patterson, J. L., Doyle, J. T., Keen, E. N. and Mcgregor, M. 1960 Circulation of the giraffe. Circulation Res. 8, 1049–1058.

    Google Scholar 

  • Griffiths, D. J. 1971 Hydrodynamics of male micturition I. Theory of steady flow through elastic-walled tubes. Med. Biol. Eng. 9, 581–588.

    Google Scholar 

  • Guyton. A. C. 1962 `Venous Return’: Handbook of Physiology, Section 2, Circulation, Vol. H ed. by W. F. Hamilton and P. Dow, American Physiological Society, Washington D. C.

    Google Scholar 

  • Hargens, A. R., Millard, R. W., Pettersson, K. and Johansen, K. 1987 Gravitational haemodynamics and oedema prevention in the giraffe. Nature 329, 59–60.

    Article  Google Scholar 

  • Heil, M. 1997 Stokes flow in collapsible tubes: computation and experiment. J. Fluid Mech. 353, 285–312. Hicks, J. W. and Badeer, H. S. 1989 Siphon mechanism in collapsible tubes: application to circulation of the giraffe head. Am. J. Physiol. 256, R567 — R571.

    Google Scholar 

  • ITo, H. 1969 Laminar flow in curved pipes. Z. Angew. Math. Mech. 49, 653–63.

    Article  MATH  Google Scholar 

  • Jan, D. L., Kamm, R. D. and Shapiro, A. H. 1983 Filling of partially collapsed compliant tubes. Asme J. Biomech. Eng. 105, 12–19.

    Article  Google Scholar 

  • Jensen, O. E. 1990 Instabilities of flow in a collapsed tube. J. Fluid Mech. 220, 623–659.

    Article  MATH  MathSciNet  Google Scholar 

  • Jensen, O. E. 1992 Chaotic oscillations in a simple collapsible-tube model. Asme J. Biomech. Eng. 114, 55–59.

    Article  Google Scholar 

  • Jensen, O. E. and Pedley, T. J. 1989 The existence of steady flow in a collapsed tube. J. Fluid Mech. 206, 339–374.

    Article  MATH  MathSciNet  Google Scholar 

  • Kamm, R. D. and Pedley, T. J. 1989 Flow in collapsible tubes: a brief review. Asme J. Biomech. Eng. 111, 177–179.

    Article  Google Scholar 

  • Kamm, R. D. and Shapiro, A. H. 1979 Unsteady flow in a collapsible tube subjected to external pressure or body forces. J. Fluid Mech. 95, 1–78.

    Article  MATH  Google Scholar 

  • Karino, T., KwOng, H. H. M. and Goldsmith, H. L. 1979 Particle flow behaviour in models of branching vessels. I. Vortices in 900 T-junctions. Biorheology 16, 231–248.

    Google Scholar 

  • Korteweg, D. J. 1878 Ober die Fortpflanzungesgeschwindigkeit des Schalles in elastischen Rohren’. Ann. Phys. Chem. Ser 3, 5, 525–542.

    Google Scholar 

  • Ku, D. N. 1988 A review of carotid duplex scanning. Echocardiography 5, 53–69.

    Article  Google Scholar 

  • Ku, D. N., Giddens, D. P., Zarins, C. K. and Glagov, S. 1985 Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5, 293–302.

    Article  Google Scholar 

  • Lambert, R. K. 1989 A new computational model for expiratory flow from nonhomogeneous human lungs. Asme J. Biomech. Eng. 111, 200–205.

    Article  Google Scholar 

  • Lee, C. S. F. and Talbot, L. 1979 A fluid-mechanical study of the closure of heart valves. J. Fluid Mech. 91, 41–63.

    Article  Google Scholar 

  • Lighthill, J. 1975 Mathematical Biofluiddynamics,Soc. Ind. Appl. Math, Philadelphia. Lighthill, J. 1978 Waves in Fluids,Cambridge University Press.

    Google Scholar 

  • Lowe, T. W. and Pedley, T. J. 1995 Computation of Stokes flow in a channel with a collapsible segment. J. Fluids and Structures 9, 885–905.

    Article  Google Scholar 

  • Luo, X. -Y. and Pedley, T. J. 1996 A numerical simulation of steady flow in a 2-D collapsible channel. J. Fluids and Structures 9, 149–174.

    Article  Google Scholar 

  • Luo, X. -Y. and Pedley, T. J. 1996 A numerical simulation of unsteady flow in a 2-D collapsible channel. J. Fluid Mech. 314, 191–225. (corrigendum 324, 408–409.)

    Google Scholar 

  • Lutz, R. J., Cannon, J. N., Bischoff, K. B. and Dedrick, R. L. 1977 Wall shear stress distribution in a model canine artery during steady flow. Circulation Res. 41, 391–399.

    Article  Google Scholar 

  • Lyne, W. H. 1971 Unsteady viscous flow in a curved pipe. J. Fluid Mech. 45, 13–31.

    Article  MATH  Google Scholar 

  • Mcconalogue, D. J. and Srivastava, R. S. 1968 Motion of fluid in a curved tube. Proc. R. Soc. Lond. A307, 37–53.

    Article  MATH  Google Scholar 

  • Mcdonald, D. A. 1974 Blood Flow in Arteries(2nd edn.)London: Edward Arnold.

    Google Scholar 

  • Mitchell, G. and Skinner, J. D. 1993 How giraffe adapt to their extraordinary shape. Trans. R. Soc. S. Africa 48, 207–218.

    Article  Google Scholar 

  • Moens, A. I. 1878 Die Pulskurve.Brill,Leiden.

    Google Scholar 

  • Moreno, A. H., Katz, A. I., Gold, L. D. and Reddy, R. V. 1970 Mechanics of distension of dog veins and other very thin-walled tubular structures. Circulation Res. 27, 1069–1080.

    Article  Google Scholar 

  • Olson, R. M. 1968 Aortic blood pressure and velocity as a function of time and position. J. Appl. Physiol. 24, 563–569.

    Google Scholar 

  • Pedley, T. J. 1980 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press. Pedley, T. J. 1987 How giraffes prevent oedema. Nature 329, 13–14.

    Google Scholar 

  • Pedley, T. J. 1992 Longitudinal tension variation in collapsible channels: a new mechanism for the breakdown of steady flow. Asme J. Biomech. Eng. 114, 60–67.

    Article  Google Scholar 

  • Pedley, T. J. 1995 High Reynolds number flow in tubes of complex geometry with application to wall shear stress in arteries. In: Biological Fluid Dynamics, ed. by C. P. Ellington and T. J. Pedley, Soc. Exp. Biol. Symposium no. 49, pp. 219–241.

    Google Scholar 

  • Pedley, T. J., Brook, B. S. and Seymour, R. S. 1996 Blood pressure and flow rate in the giraffe jugular vein. Phil. Trans. R. Soc. Lond. B 351, 855–866.

    Article  Google Scholar 

  • Pedley, T. J. and Luo, X.-Y. 1998 Models of flow and oscillations in collapsible tubes. Theor. and Comput. Fluid Dyn. 10, 277–294.

    Article  MATH  Google Scholar 

  • Pedley, T. J., Schroter, R. C. and Sudlow, M. F. 1977 Gas flow and mixing in the airways. In: Bioengineering aspects of the lung, ed. by J. B. West. Marcel Dekker, New York, pp. 163–265.

    Google Scholar 

  • Pedley, T. J. and Stephanoff, K. D. 1985 Flow along a channel with a time-dependent indentation in one wall: the generation of vorticity waves. J. Fluid Mech. 160, 337–367.

    Article  Google Scholar 

  • Permutt, S., Bromberger-Barnea, B. and Bane, H. N. 1963 Hemodynamics of collapsible vessels with tone. The vascular waterfall. J. Appl. Physiol. 18, 924–932.

    Google Scholar 

  • Prandtl, L. 1952 The Essentials of Fluid Mechanics 3rd edn., translated. Glasgow: Blackie and Son.

    Google Scholar 

  • Ralph, M. E. and Pedley, T. J. 1988 Flow in a channel with a moving indentation. J. Fluid Mech. 190, 87–112.

    Article  Google Scholar 

  • Ralph, M. E. and Pedley, T. J. 1990 Flow in a channel with a time-dependent indentation in one wall. Asme J. Fluids Eng. 112, 468–475.

    Article  Google Scholar 

  • Rast, M. P. 1994 Simultaneous solution of the Navier-Stokes and elastic membrane equations by a finite-element method. Int. J. Numer. Methods. Fluids 19, 1115–1135.

    Article  MATH  Google Scholar 

  • Reneau, L. R., Johnston, J. P. and Kline, S. J. 1967 Performance and design of straight, two-dimensional diffusers. Asme J. Basic Eng. 89, 141–150.

    Article  Google Scholar 

  • Schroter, R. C. and Sudlow, M. F. 1969 Flow patterns in models of the human bronchial airways. Respir. Physiol. 7, 341–355.

    Article  Google Scholar 

  • Secomb, T. W. 1979 Flows in tubes and channels with indented and moving walls. PhD Thesis, Cambridge University.

    Google Scholar 

  • Shapiro, A. H. 1977a Steady flow in collapsible tubes. Asme J. Biomech. Eng. 99, 126–147.

    Article  Google Scholar 

  • Shapiro, A. H. 1977b Physiologic and medical aspects of flow in collapsible tubes. Proc. 6th Can. Congr. Appl. Mech., 883–906.

    Google Scholar 

  • Singh, M. P. 1974 Entry flow in a curved pipe. J. Fluid Mech. 65, 517–39.

    Article  MATH  Google Scholar 

  • Smith, F. T. 1976a Flow through constricted or dilated pipes and channels: Part I. Q. J. Mech. Appl. Math. 29, 343–364.

    Article  MATH  Google Scholar 

  • Smith, F. T. 1976b Flow through constricted or dilated pipes and channels: Part II. Q. J. Mech. Appl. Math. 29, 365–376.

    Article  MATH  Google Scholar 

  • Smith, F. T. 1975 Pulsatile flow in curved pipes. J. Fluid Mech. 71, 15–42.

    Article  MATH  Google Scholar 

  • Sobey, I. J. 1985 Observation of waves during oscillatory channel flow. J. Fluid Mech. 151, 395–426. Taylor, C. A., Hughes, T. J. R. and Zarins, C. K. 1996 Computational investigations in vascular disease. Computers in Physics 10, 224–232.

    Google Scholar 

  • Tutty, O. R. and Pedley, T. J. 1993 Oscillatory flow in a stepped channel. J. Fluid Mech. 247, 179–204. Walburn, F. J. and Stein, P. D. 1980 Flow in a symmetrically branched tube simulating the aortic bifurcation: the effects of unevenly distributed flow. Ann. Biomed. Eng. 8, 159–173.

    Google Scholar 

  • Weinbaum, S. and Chien, S. 1993 Lipid transport aspects of atherogenesis. Asme J. Biomech. Eng. 115, 602–610.

    Article  Google Scholar 

  • White, C. M. 1929 Streamline flow through curved pipes. Proc. R. Soc. Lond. A 123, 645–663. Womersley, J. R. 1955 Method for calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. Lond. 127, 553–563.

    Google Scholar 

  • Womersley, J. R. 1957 The mathematical analysis of the arterial circulation in a state of oscillatory motion. Wright Air Development Center, Tech. Rep. Wadc-TR 56–614.

    Google Scholar 

  • Yanase, S., Goto, N. and Yamamoto, K. 1999 Dual solutions of the flow through a curved tube. Fluid Dyn. Res. 5, 191–201.

    Article  Google Scholar 

  • Young, T. 1809 On the functions of the heart and arteries. Phil. Trans. R. Soc. Lond. 99, 1–31.

    Article  Google Scholar 

  • Yuan, F., Chien, S. and Weinbaum, S. 1991 A new view of convective-diffusive transport processes in the arterial intima. Asme J. Biomech. Eng. 113, 314–329.

    Article  Google Scholar 

  • Zarins, C. K., Giddens, D. P., Bharadvaj, B. K., Sottiurai, V. S., Mabon, R. F. and Glagov, S. 1983 Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Res. 53, 502–514.

    Google Scholar 

  • Zeller, H., Talukder, N. and Lorenz, J. 1970 Model studies of pulsating flow in arterial branches and wave propagation in blood vessels. In Fluid Dynamics of Blood Circulation and Respiratory Flow, Agard Conference Proceedings no 65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Pedley, T.J. (2003). Arterial and Venous Fluid Dynamics. In: Pedrizzetti, G., Perktold, K. (eds) Cardiovascular Fluid Mechanics. International Centre for Mechanical Sciences, vol 446. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2542-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2542-7_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00538-5

  • Online ISBN: 978-3-7091-2542-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics