Skip to main content

Numerical Issues in Finite Elasticity and Viscoelasticity

  • Chapter
Mechanics and Thermomechanics of Rubberlike Solids

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 452))

Abstract

This chapter starts with an introduction to the notion of finite element methods in solid mechanics. After an overview of basic concepts in l-D, the multi-D problem is investigated within the context of finite elasticity. Particular attention is paid to the socalled mixed variational principles that are needed for the solution of nearly incompressible solids. Special forms for elasticity in principal stretches are also given. Details of commonly used notations for actual implementations are covered. The chapter closes with several sections covering important special cases that arise in the modeling of elastomeric solids. First, numerical issues in the solution linear and nonlinear finite deformation viscoelasticity are discussed. This includes both convolution form models and multiplicative split type models. This is followed by the application of finite element methods to the solution of inverse design problems of the type that arise in mold design. Next, the general numerical methods are applied to the case of steady state spinning which is important in the analysis of automotive tires. The last two sections deal with the special cases of damage models and energy release rate computations in elastomers.

©Sanjay Govindjee 2002, all rights reserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball, J. M. (1977a). Convexity conditions and existence theorems in nonlinear elasticity. Archives for Rational Mechanics and Analysis 63: 337–402.

    Article  MATH  Google Scholar 

  • Ball, J. (1977b). Constitutive inequalities and existance theorems in nonlinear elastostatics. In Knops, R., ed., Nonlinear analysis and mechanics: Heriot-Watt Symposium, volume 1, 187–241.

    Google Scholar 

  • Bass, J. (1987). Three-dimensional finite deformation, rolling contact of a hyperelastic cylinder: Formulation of the and computational results. Computers and Structures 26: 991–1004.

    Article  Google Scholar 

  • Bergstrom, J., and Boyce, M. (1998). Constitutive modeling of the large strain time-dependent behavior of elastomers. Journal of the Mechanics and Physics of Solids 46: 931–954.

    Article  Google Scholar 

  • Brezzi, F., and Fortin, M. (1991). Mixed and Hybrid Finite Element Methods. Springer-Verlag.

    Google Scholar 

  • Budiansky, B., and Rice, J. (1973). Conservation laws and energy-release rates. Journal of Applied Mechanics 40: 201–203.

    Article  MATH  Google Scholar 

  • Chadwick, P. (1974). Thermo-mechanics of rubberlike materials. Philosophical Transactions of the Royal Society of London Series A 276: 371–403.

    Article  MATH  Google Scholar 

  • Chadwick, P. (1975). Applications of an energy-momentum tensor in elastostatics. Journal of Elasticity 5: 249–258.

    Article  MathSciNet  MATH  Google Scholar 

  • Christensen, R. (1980). A nonlinear theory of viscoelasticity for application to elastomers. Journal of Applied Mechanics 47: 762–768.

    Article  MATH  Google Scholar 

  • Ciarlet, P. (1988). Mathematical Elasticity, Volume 1: Three Dimensional Elasticity. Amsterdam: North-Holland.

    Google Scholar 

  • Dacorogna, B. (1989). Direct Methods in the Calculus of Variations. Springer-Verlag.

    Google Scholar 

  • Eshelby, J. (1956). The continuum theory of lattice defects. In Seitz, F., and Turnbull, D., eds., Solid State Physics, Advances in Research and Applications, volume III. Academic Press. 79–144.

    Google Scholar 

  • Eshelby, J. (1975). The elastic energy-momentum tensor. Journal of Elasticity 5: 321–335.

    Article  MathSciNet  MATH  Google Scholar 

  • Eterovic, A., and Bathe, K. (1990). A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. International Journal for Numerical Methods in Engineering 30: 1099–1114.

    Article  MATH  Google Scholar 

  • Euler, L. (1744). Methodus inveniendi lineal curvas. Opera omnia 124: 264–266. (reprinted 1952).

    Google Scholar 

  • Flory, P. (1961). Thermodynamic relations for high elastic materials. Transactions of the Faraday Society 57: 829–838.

    Article  MathSciNet  Google Scholar 

  • Fried, I. (1974). Finite element analysis of incompressible materials by residual energy balancing. International Journal of Solids and Structures 10: 993–1002.

    Article  MATH  Google Scholar 

  • Golub, G., and Van Loan, C. (1996). Matrix Computations. Johns Hopkins University Press, 3rd edition.

    Google Scholar 

  • Govindjee, S., and Mihalic, P. (1996). Computational methods for inverse finite elastostatics. Computer Methods in Applied Mechanics and Engineering 136: 47–57.

    Article  MATH  Google Scholar 

  • Govindjee, S., and Mihalic, P. (1998a). Computational methods for inverse deformations in quasi-incompressible finite elasticity. International Journal for Numerical Methods in Engineering 43: 821–828.

    Article  MATH  Google Scholar 

  • Govindjee, S., and Mihalic, P. (1998b). Viscoelastic constitutive relations for the steady spinning of a cylinder. Technical Report UCB/SEMM-98/02, University of California Berkeley, Department of Civil Engineering.

    Google Scholar 

  • Govindjee, S., and Reese, S. (1997). A presentation and comparison of two large deformation viscoelasticity models. ASME Journal of Engineering Materials and Technology 119: 251–255.

    Article  Google Scholar 

  • Govindjee, S., and Simo, J. (1991). A micro-mechanically based continuum damage model for carbon black filled rubbers incorporating mullins’ effect. Journal of the Mechanics and Physics of Solids 39: 87–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Govindjee, S., and Simo, J. (1992a). Mullins’ effect and the strain amplitude dependence of the storage modulus. International Journal of Solids and Structures 29: 1737–1751.

    Article  MATH  Google Scholar 

  • Govindjee, S., and Simo, J. (1992b). Transition from micro-mechanics to computationally efficient phenomenology: Carbon black filled rubbers incorporating mullins’ effect. Journal of the Mechanics and Physics of Solids 40: 213–233.

    Article  MATH  Google Scholar 

  • Govindjee, S. (1999). Finite deformation inverse design modeling with temperature changes, axis-symmetry and anisotropy. Technical Report UCB/SEMM-1999/01, University of California Berkeley, Department of Civil Engineering.

    Google Scholar 

  • Griffith, A. (1920). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221A: 163–197.

    Google Scholar 

  • Gurtin, M. (1981). An Introduction to Continuum Mechanics. Academic Press, Inc.

    MATH  Google Scholar 

  • Herrmann, L. R., and Peterson, E. F. (1968). A numerical procedure for visco-elastic stress analysis. Proc. 7th Meeting of ICRPG Mechanical Behavior Working Group Orlando, FL.

    Google Scholar 

  • Ingles, C. (1913). Stresses in a plate due to the presence of cracks and sharp corners. Transactions of the Institute of Naval Architects 55: 219–241.

    Google Scholar 

  • Irwin, G. (1948). Fracture Dynamics. American Society for Metals. 147–166.

    Google Scholar 

  • Johnson, C. (1987). Numerical Solutions of Partial Differential Equations by the Finite Element Method. Cambridge University Press.

    Google Scholar 

  • Kennedy, R., and Padovan, J. (1987). Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure-ii. shell and three-dimensional simulations. Computers and Structures 27: 249–257.

    Article  Google Scholar 

  • Koishi, M., and Govindjee, S. (2001). Inverse design methodology of a tire. Tire Science and Technology Journal 29: 155–170.

    Article  Google Scholar 

  • Le Tallec, P., and Rahier, C. (1994). Numerical models of steady rolling for non-linear viscoelastic structures in finite deformations. International Journal for Numerical Methods in Engineering 37: 1159–1186.

    Article  MATH  Google Scholar 

  • Li, F., Shih, C., and Needleman, A. (1985). A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics 21: 405–421.

    Article  Google Scholar 

  • Lynch, F. D. S. (1969). A finite element method of viscoelastic stress analysis with application to rolling contract problems. International Journal for Numerical Methods in Engineering 1: 379–394.

    Article  Google Scholar 

  • Maugin, G., and Tirmarco, C. (1992). Pseudomomentum and material forces in nonlinear elasticity: variational formulations and applications to brittle fracture. Acta Mechanica 94: 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Oden, J., and Lin, T. (1986). On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Computer Methods in Applied Mechanics and Engineering 57: 297–367.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogden, R., and Roxburgh, D. (1999). A pseudo-elastic model for the mullins effect in filled rubber. Proceedings of the Royal Society of London A455: 2861–2877.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogden, R. W. (1984). Non-linear Elastic Deformations. Ellis Horwood Limited.

    Google Scholar 

  • Padovan, J., and Paramodilok, O. (1985). Transient and steady state viscoelastic rolling contact. Computers and Structures 20: 545–553.

    Article  MATH  Google Scholar 

  • Padovan, J. (1987). Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure-i. theory. Computers and Structures 27: 249–257.

    Article  MATH  Google Scholar 

  • Poincaré, H. (1929). The Foundations of Science. The Science Press. ( Translation: B. Halstep).

    Google Scholar 

  • Reese, S., and Govindjee, S. (1998a). Theoretical and numerical aspects in the thermo-viscoelastic material behaviour of rubber-like polymers. Mechanics of Time-Dependent Materials 1: 357–396.

    Article  Google Scholar 

  • Reese, S., and Govindjee, S. (1998b). A theory of finite viscoelasticity and numerical aspects. International Journal of Solids and Structures 35: 3455–3482.

    Article  MATH  Google Scholar 

  • Rice, J. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 35: 379–386.

    Article  Google Scholar 

  • Rivlin, R., and Thomas, A. (1953). Rupture of rubber 1. Characteristic energy for tearing. Journal of Polymer Science 10: 291–318.

    Article  Google Scholar 

  • Shield, R. (1967). Inverse deformation results in finite elasticity. Zeitschrift far Agnew Math. Phys. 18: 381–389.

    Google Scholar 

  • Sidoroff, F. (1974). Un modèle viscoélastique non linéaire avec configuration intermédiaire. Journal de Mécanique 13: 679–713.

    MathSciNet  Google Scholar 

  • Simo, J. C., and Hughes, T. J. R. (1998). Computational Inelasticity. Springer-Verlag.

    Google Scholar 

  • Simo, J., and Taylor, R. (1991). Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms Computer Methods in Applied Mechanics and Engineering 85: 273–310.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J. C. (1987). On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comp. Meth. Appl. Mech. Engng. 60: 153–173.

    Article  MATH  Google Scholar 

  • Simo, J. (1992). Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Computer Methods in Applied Mechanics and Engineering 99: 61–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Steinmann, P., Ackermann, D., and Barth, F. (2001). Application of material forces to hyperelastic fracture mechanics. II. Computational setting. International Journal of Solids and Structures 38: 5509–5526.

    Article  MATH  Google Scholar 

  • Steinmann, P. (2000). Application of material forces to hyperelastic fracture mechanics. I. Continuum mechanical setting. International Journal of Solids and Structures 37: 7371–7391.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, R. L., Pister, K. S., and Goudreau, G. L. (1970). Thermomechanical analysis of viscoelastic solids. Int.J.Numer.Meth.Eng 2: 45–49.

    Article  MATH  Google Scholar 

  • Truesdell, C. (1953). A new chapter in the theory of the elastica. In Proceedings of the First Midwestern Conference on Solid Mechanics, 52–55.

    Google Scholar 

  • Weber, G., and Anand, L. (1990). Finite deformation. constitutive equations and a time integration procedure for isotropic hyperelastic-viscoplastic solids. Computer Methods in Applied Mechanics and Engineering 79: 173–202.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O., and Taylor, R. (2000). The Finite Element Method, Volume 2. Butterworth and Heinemann, 5th edition.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Govindjee, S. (2004). Numerical Issues in Finite Elasticity and Viscoelasticity. In: Saccomandi, G., Ogden, R.W. (eds) Mechanics and Thermomechanics of Rubberlike Solids. International Centre for Mechanical Sciences, vol 452. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2540-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2540-3_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-21251-6

  • Online ISBN: 978-3-7091-2540-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics