# Phenomenology of Rubber-Like Materials

Chapter

## Abstract

These lectures are devoted to an overview of the basic balance laws and constitutive requirements of continuum mechanics. Some solutions of simple boundary value problems are considered and a critical review of strain-energy density functions is proposed.

## Keywords

Nonlinear Elasticity Anti Plane Shear Incompressible Material Antiplane Shear Finite Elasticity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- Aberayatne, R. and Knowles, J. (2001) in: Y. Fu, R. Ogden (Eds.),
*Non-linear Elasticity*, Cambridge University Press, Cambridge.Google Scholar - Arruda, E. M. and Boyce, M. C. (1993) A three dimensional constitutive model for the large deformation stretch behavior of rubber elastic materials,
*J. Mech. Phys. Solids***41**, 389–412.CrossRefGoogle Scholar - Ball, J. M. (2003) Some open problems in elasticity, in: P. Newton, P. Holmes, A. Weinstein (Eds.)
*Geometry*,*Mechanics and Dynamics*, Springer, New-York.Google Scholar - Benvenuto, E. (1998) A. J. C. Barrè de Saint-Venant: the man, the scientist, the engineer, in:
*Il problema di de Saint-Venant: aspetti teorici ad applicativi*, Atti dei Convegni Lincei 140, Accademia dei Lincei, Roma.Google Scholar - Bischoff, E. J., Arruda, E. M. and Grosh, K. (2001) A new constitutive model for the compressibility of elastomers at finite deformations,
*Rubber Chemistry and Technology***74**, 541–559.CrossRefGoogle Scholar - Boyce, M. C. and Arruda, E. M. (2000) Constitutive models of rubber elasticity: a review,
*Rubber Chemistry and Technology***73**, 504–523.CrossRefGoogle Scholar - Chen, Y. C. and Rajagopal, K. R. (2001) Boundary layer solutions in elastic solids,
*J. of Elasticity***62**, 203–216.MathSciNetCrossRefMATHGoogle Scholar - Coleman, B. D. and Noll, W. (1963) The thermodynamics of elastic materials with heat conduction and viscosity,
*Arch. Rational Mech. Anal.***13**, 245–261.MathSciNetCrossRefMATHGoogle Scholar - Criscione, J. C., Humphrey, J. D., Douglas, A. S. and Hunter, W. C. (2000) An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity,
*J. Mech. and Phys. of Solids*,**48**, 2445–2465.CrossRefMATHGoogle Scholar - Criscione, J. C., McCulloch, A. D., and Hunter, W. C. (2002) Constitutive framework optimized for myocardium and other high-strain laminar materials with one fiber family,
*J. Mech. and Phys. of Solids*,**50**, 1681–1702.MathSciNetCrossRefMATHGoogle Scholar - Dorfmann, A. and Muhr, A., (Eds.)(1999)
*Constitutive Models for Rubber*,Balkema, Rotterdam.Google Scholar - Ericksen, J. L. (1997)
*Introduction to the Thermodynamics of Solids*, Springer, New-York.Google Scholar - Fosdick, R. L. and Kao, B. G. (1978) Transverse deformations associated with rectilinear shear in elastic solids,
*J. of Elasticity*, 8 117–142.MathSciNetCrossRefMATHGoogle Scholar - Gent, A. N. (1996) A new constitutive relation for rubber,
*Rubber Chemistry and Technology*,**69**, 59–61.MathSciNetCrossRefGoogle Scholar - Holzapfel, G. A. (2001)
*Nonlinear Solid Mechanics*, Wiley, Chichester.Google Scholar - Horgan, C. 0. (1995) Antiplane shear deformation in linear and nonlinear solid mechanics,
*SIAM Rev*.**37**, 53–81Google Scholar - Horgan, C. 0. and Saccomandi, G. (1999) Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility,
*J. of Elasticity*,**56**159–170.MATHGoogle Scholar - Horgan, C. 0. and Saccomandi, G. (2002a) Constitutive modelling of rubber-like and biological materials with limiting chain extensibility,
*Mathematics and Mechanics of Solids*, 7 353–371.MathSciNetMATHGoogle Scholar - Horgan, C. 0. and Saccomandi, G. (2002b) A molecular-statistical basis for the Gent constitutive model of rubber elasticity,
*Journal of Elasticity*,**68**167–176.MathSciNetMATHGoogle Scholar - Horgan, C. 0. and Saccomandi, G. (2003) Finite thermoelasticity with limiting chain extensibility,
*Journal of Mechanics and Physics of Solids*, 75, 839–851.Google Scholar - Horgan, C. 0. and Saccomandi, G. (2004) Coupling of anti-plane shear deformations with plane deformations in generalized neo-Hookean isotropic, incompressible, hyperelastic materials, submitted.Google Scholar
- Horgan, C. 0., Saccomandi, G. and Sgura, I. (2003) Finite thermoelasticity with limiting chain extensibility,
*SIAM Journal on Applied Mathematics*,**65**, 1712–1727.Google Scholar - Knowles, J. K. (1977) The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids,
*Int. J. of Fracture***13**, 611–639.MathSciNetCrossRefGoogle Scholar - Martin, S.E. and Carlson, D. E. (1977) The behavior of elastic heat conductors with second order response functions,
*ZAMP***28**, 311–329.CrossRefMATHGoogle Scholar - Müller, I. (1985)
*Thermodynamics*, Pitman, Boston-London-Melbourne.MATHGoogle Scholar - Murnaghan, F. D. (1937) Finite deformation of an elastic solid,
*Amer. J. Math.***59**, 235–260.MathSciNetCrossRefMATHGoogle Scholar - Murphy J. and Rogerson G. (2002) A method to model simple tension experiments using finite elasticity theory with an application to some polyurethane foams,
*Int. J.of Engngr. Sci***40**, 499–510.CrossRefGoogle Scholar - Mollica, F. and Rajagopal, K. R. (1997) Secondary deformations due to axial shear of the annular region between two eccentricaly place cylinder,
*J. of Elasticity***48**103–123.MathSciNetCrossRefMATHGoogle Scholar - Murray, J. D. (1984)
*Asymptotic Analysis*, Springer, New-York.CrossRefMATHGoogle Scholar - Ogden, R. W. (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids,
*Proc. Roy. Soc. London A***328**, 567–584.CrossRefMATHGoogle Scholar - Ogden, R. W. (1984)
*Non-Linear Elastic Deformations*, Ellis Horwood, Chichester. Reprinted by Dover (1997).Google Scholar - Ogden, R.W. (1986) Recent advances in the theory of phenomenological theory of rubber elasticity,
*Rubber Chemistry and Technology*,**59**, 361–383CrossRefGoogle Scholar - Pedregal, P. (2000)
*Variational methods in nonlinear elasticity*, SIAM, Philadelphia.CrossRefMATHGoogle Scholar - Peng, T. J. and Landel, R. F. (1972) Stored energy function of rubberlike materials derive from tensile data,
*J. of Appl. Phys.***43**, 3064–3067.CrossRefGoogle Scholar - Perrin, G. (2000) Analytic stress-strain relationship for isotropic network model of rubber elasticity,
*C.R. Acad. Sci. Paris**328*,*Série II*, 5–10.Google Scholar - Pucci, E. and Saccomandi, G. (1999) Some remarks on the Gent model of rubber elasticity,
*CanCNSM proceedings*(edited by Elena M. Croitoro), University of Victoria Press, Victoria, Canada, 163–172.Google Scholar - Pucci, E. and Saccomandi, G. (2002) A note on the Gent model for rubber-like materials, to appear in
*Rubber Chemistry and Technology*,*75*839–851.CrossRefGoogle Scholar - Rajagopal, K. R. and Srinivasa, A. R. (2000) A thermodynamic frame work for rate type fluid models,
*J. Non_Newtonian Fluid. Mech*.**88**,*207–227*.Google Scholar - Rivlin, R. S. (1960) Some topics in finite elasticity in
*Proc. of the First Naval Symp. on Structural Mech.*,*pp*. 169–198, Pergamon Press, New York.Google Scholar - Saccomandi, G. (2001) Universal results in finite elasticiy, in: Y. Fu, R. Ogden (Eds.),
*Non-linear Elasticity*, Cambridge University Press, Cambridge.Google Scholar - Signorini, A. (1955) Trasformazioni termoelastiche finite,
*Ann. di Mat. Pura Appl.***39**, 147–201.MathSciNetCrossRefMATHGoogle Scholar - Singh, S. (1967) Small finite deformations of elastic dielectrics,
*Quart. Appl. Math.***25**, 275–284.MATHGoogle Scholar - Spencer. A. J. M. (1972)
*Deformations of fibre-reinforced materials*,Oxford University Press.Google Scholar - Valanis, K. C. and Landel, R. F. (1967) The strain-energy function of a hyperelastic materials in terms of extension ratios,
*J. of Appl. Phys.*,**38**, 2997–3002.CrossRefGoogle Scholar - Zhang, J. P. and Rajagopal, K. R. (1992) Some inhomogeneous motions and deformations within the context of a nonlinear elastic solid,
*Int. J. Engngr. Sci.*,**30**919–938.MathSciNetCrossRefMATHGoogle Scholar

## Copyright information

© Springer-Verlag Wien 2004