Skip to main content

Critical Heat Flux, Post-CHF Heat Transfer and Their Augmentation

  • Chapter
Modelling and Experimentation in Two-Phase Flow

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 450))

Abstract

The present work reports on the state-of-the-art review on the critical heat flux and the post-dryout heat transfer. The first two sections are somewhat tutorial, and are featured in a similar way. They provide, after a brief introduction, with information on parametric trends, i.e. on the influence of the thermal-hydraulic and geometric parameters on the thermal crisis. After that, the most widely used correlations are described in detail, either in terms of reliability and simplicity of use. Eventually, the various approaches for a modelling of the critical heat flux are reported. The third section describes correlations and models available for the prediction of the post-dryout heat transfer, trying also to highlight the main drawbacks. Finally, the fourth section describes the passive techniques for the enhancement of the critical heat flux and the post-dryout heat transfer, together with available correlations. The present work is a merge of original researches carried out at the Institute of Thermal Fluid Dynamic of ENEA and a thorough review of the recent literature.

Copyright ©1999 from Handbook of Phase Change/1 by S. Kandlikar, M. Shoji, V. K. Dhir (Editors). Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achilli A., Cattadori G. and Gaspari G.P. (1993), Subcooled Burnout in Uniformly and Non-Uniformly Heated Tubes, Paper C2 presented at the European Two-Phase Flow Group Meeting, Stockholm, June

    Google Scholar 

  • Aladyev I.T., Miropolsky Z.L., Doroshchuk V.E. and Styrikovich M.A. (1961), Boiling Crisis in Tubes, Int. Developments in Heat Transfer, Vol. II, Paper 28, University of Colorado, Boulder

    Google Scholar 

  • Alekseev G.V., Zenkevitch B.A., Peskov O.L., Sergeev N.D. and Subbotin V.I. (1965), Burnout Heat Fluxes under Forced Water Flow, Teploenergetika, Vol. 12, n. 3, pp. 47–51

    Google Scholar 

  • Andrews D.G., Hooper F.C., and Butt P. (1968), Velocity, Subcooling and Surface Effects in the Departure from Nucleate Boiling of Organic Binaries, Can. J. Chem. Engng., Vol. 46, pp. 194–199

    Google Scholar 

  • Auracher H. and Marroquin A. (1995), Critical Heat Flux and Minimum Heat Flux of Film Boiling of Binary Mixtures Flowing Upwards in a Vertical Tube, Engineering Foundation Conference on Convective Flow Boiling, Paper V - 3, Banff, May

    Google Scholar 

  • Bahr A., Herkenrath H. and Mork-Morkenstein P. (1969), Anomale Druck-abhängigkeit der Wärmeübertragung im Zweiphasengebeit bei Annäherung an der Kritischen Druck, Brennstoff-Wärme-Kraft, Vol. 21, n. 12, pp. 631–633

    Google Scholar 

  • Bailey N.A. (1971), Film Boling on Sumberged Vertical Cylinders, AEEW-M1051

    Google Scholar 

  • Barnett P.G. (1963), An Investigation into the Validity of Certain Hypotheses Implied by Various Burnout Correlations, AEEW-R 214

    Google Scholar 

  • Becker K. (1971), Measurements of Burnout Conditions for Flow of Boiling Water in Horizontal Round Tubes, AERL-1262

    Google Scholar 

  • Bennet A.W., Hewitt G.F. and Keeys R.K.F. (1967), Heat Transfer to Steam-Water Mixtures Flowing in Uniformly Heated Tubes in Which the Critical Heat Flux Has Been Exceeded, Paper 27 presented a tthe Thermodynamics and Fluid Mechanics Convention, IMechE, Bristol, March, 1968 (Also AERE-R 5573 )

    Google Scholar 

  • Bennet A.W., Hewitt G.F., Kearsey H.A., Keeys R.K.F. and Pulling D.J. (1966), Studies of Burnout in Boiling Heat Transfer to Water in Round Tubes with Non-Uniform Heating, AERE-R 5076

    Google Scholar 

  • Bergel’son B.R. (1980), Burnout Under Conditions of Subcooled Boiling and Forced Convection, Thermal Engineering, Vol. 27, n. 1, pp. 48–50

    Google Scholar 

  • Bergles A.E. (1963), Subcooled Burnout in Tubes of Small Diameter, ASME Paper 63-WA-182

    Google Scholar 

  • Bergles A.E. (1977), Burnout in Boiling Heat Transfer, Part II: Subcooled and Low-Quality Forced Convection Systems, Nuclear Safety, Vol. 18, n. 2, p. 154

    Google Scholar 

  • Bergles A.E. (1992), Heat Transfer Enhancement-Second Generation Heat Tranfer Technology, Proc. 10th UIT National Heat Transfer Conference, pp. 3–21, Genoa, June

    Google Scholar 

  • Bergles A.E. and Scarola L.S. (1966), Effect of a Volatile Additive on the Critical Heat Flux for Surface Boiling of Water in Tubes, Chem. Engng. Science, Vol. 21, pp. 721–723

    Google Scholar 

  • Bergles A.E., Collier J.G., Delhaye J.M., Hewitt G.F. and Mayinger F. (1981), Two-Phase Flow and Heat Transfer in the Power and Process Industries, Hemisphere Publishing Corporation, New York

    Google Scholar 

  • Bergles A.E., Fuller W.D. and Hynek S.J. (1971), Dispersed Flow Film Boiling of Nitrogen with Swirl Flow, Int. J. Heat Mass Transfer, Vol. 14, pp. 1343–1354

    Google Scholar 

  • Berthoud G. and Jayanti S. (1990), Characterization of Dryout in Helical Coils, Int. J. Heat Mass Transfer, Vol. 33, n. 7, pp. 1451–1463

    Google Scholar 

  • Bertoletti S., Gaspari G.P., Lombardi C., Peterlongo G., Silvestri M. and Tacconi F.A. (1965), Heat Transfer Crisis with Steam-Water Mixtures, Energia Nucleare, Vol. 12, n. 3, pp. 121–172

    Google Scholar 

  • Bertoni R., Cipriani R., Cumo M. and Palazzi G. (1976), Upflow and Downflow Burnout, CNEN Report RT/ING(76)24

    Google Scholar 

  • Bowring R.W. (1972), A Simple but Accurate Round Tube Uniform Heat Flux, Dryout Correlation over the Pressure Range 0.7–17 MN/m2 (100–2500 psia), AAEW-R 789

    Google Scholar 

  • Boyd R.D. (1985a), Subcooled Flow Boiling Critical Heat Flux (CHF) and its Application to Fusion Energy Components. Part I: A Review of Fundamentals of CHF and Related Data Base, Fusion Technology, Vol. 7, pp. 7–30

    Google Scholar 

  • Boyd R.D. (1985b), Subcooled Flow Boiling Critical Heat Flux (CHF) and its Application to Fusion Energy Components. Part II: A Review of Microconvective, Experimental, and Correlational Aspects, Fusion Technology, Vol. 7, pp. 31–52

    Google Scholar 

  • Boyd R.D. (1988), Subcooled Water Flow Boiling Experiments Under Uniform High Flux Conditions, Fusion Technology, Vol. 13, pp. 131–142

    Google Scholar 

  • Boyd R.D. (1989), Subcooled Water Flow Boiling at 1.66 MPa Under Uniform High Heat Flux Conditions, ASME Winter Annual Meeting, S. Francisco, December 10–15 (HTD–Vol. 119, pp. 9–15 )

    Google Scholar 

  • Boyd R.D. (1990), Subcooled Water Flow Boiling Transition and the L/D Effect on CHF for a Horizontal Uniformly Heated Tube, Fusion Technology, Vol. 18, pp. 317–324

    Google Scholar 

  • Bromley L.A., LeRoy N.R. and Robbers J.A. (1953), Heat Transfer in Forced Convection Film Boiling, Ind. and Engng. Chem., Vol. 45, n. 12, pp. 2639–2646

    Google Scholar 

  • Burdunin M.N., Zvonarev Yu.A., Komendatov A.S. and Kuzma-Kichta Yu.A. (1987), Investigation of Post-Dryout Heat Transfer in Channel of Complex Shape, Heat Transfer-Soviet Research, Vol. 19, n. 1, pp. 115–121

    Google Scholar 

  • Cardella A., Celata G.P., Dell’Orco G., Gaspari G.P., Cattadori G. and Mariani A. (1992), Thermal Hydraulic Experiments for the NET Divertor, Proc. 17th Symposium on Fusion Technology, Vol. 1, pp. 206–210, Rome, September

    Google Scholar 

  • Carne M. (1963), Studies of the Critical Heat Flux for some Binary Mixtures and their Components, Can. J. Chem. Engng., pp. 235–240

    Google Scholar 

  • Cattadori G., Gaspari G.P., Celata G.P., Cumo M., Mariani A. and Zummo G. (1993), Hypervapotron Technique in Subcooled Flow Boiling CHF, Experimental Thermal and Fluid Science, Vol. 7, pp. 230240

    Google Scholar 

  • Celata G.P. (1996), Critical Heat Flux in Water Subcooled Flow Boiling: Experimentation and Modelling, keynote lecture, Proc. 2nd European Thermal-Sciences Conference, Vol. I, pp. 27–40, Edizioni ETS, Pisa, May

    Google Scholar 

  • Celata G.P. (1997), Modelling of Critical Heat Flux in Subcooled Flow Boiling, keynote lecture, Convective Flow and Pool Boiling Conference, Irsee, 18–23 May 1997

    Google Scholar 

  • Celata G.P. and Cumo M. (1996), Forced Convective Boiling of Refrigerant Binary Mixtures, keynote lecture, Proc. 4th International Symposium on Heat Transfer, pp. 70–80, Beijing, September

    Google Scholar 

  • Celata G.P. and Mariani A. (1993), A Data Set of Critical Heat Flux in Water Subcooled Flow Boiling, presented at the 3rd Specialists’ Workshop on the Thermal-Hydraulics of High Heat Flux Components in Fusion Reactors, J. Schlosser Ed., Cadarache, September

    Google Scholar 

  • Celata G.P., Cumo M. and Mariani A. (1993a), Burnout in Highly Subcooled Water Flow Boiling in Small Diameter Tubes, Int. J. Heat Mass Transfer, Vol. 36, n. 5, pp. 1269–1285

    Google Scholar 

  • Celata G.P., Cumo M., Inasaka F., Mariani A. and Nariai H. (1993b), Influence of Channel Diameter on Subcooled Flow Boiling Burnout at High Heat Fluxes, Int. J. Heat Mass Transfer, Vol. 36, n. 13, pp. 3407–3410

    Google Scholar 

  • Celata G.P., Cumo M. and Mariani A. (1994a), Assessment of Correlations and Models for the Prediction of CHF in Subcooled Flow Boiling, Int. J. Heat Mass Transfer, Vol. 37, n. 2, pp. 237–255

    Google Scholar 

  • Celata G.P., Cumo M. and Mariani A. (1994b), Enhancement of CHF Water Subcooled Flow Boiling in Tubes using Helically Coiled Wires, Int. J. Heat Mass Transfer, Vol. 37, n. 1, pp. 53–67

    Google Scholar 

  • Celata G.P., Cumo M., Mariani A., Simoncini M. and Zummo G. (1994c), Rationalization of Existing Mechanistic Models for the Prediction of Water Subcooled Flow Boiling Critical Heat Flux, Int. J. Heat Mass Transfer, Vol. 37, n. 7, Suppl. 1, pp. 347–360

    Google Scholar 

  • Celata G.P., Cumo M. and Setaro T. (1994d), Critical Heat Flux in Upflow Convective Boiling of Refrigerant Binary Mixtures, Int. J. Heat Mass Transfer, Vol. 37, n. 7, pp. 1143–1153

    Google Scholar 

  • Celata G.P., Cumo M., Mariani A. and Zummo G. (1995a), Preliminary Remarks on Visualization of High Heat Flux Burnout in Subcooled Water Flow Boiling, Proc. International Symposium on Two-Phase Flow Modelling and Experimentation, Vol. 2, pp. 859–866, Rome, October

    Google Scholar 

  • Celata G.P., Cumo M., Mariani A. and Zummo G. (1995b), The Prediction of Critical Heat Flux in Water Subcooled Flow Boiling, Int. J. Heat Mass Transfer, Vol. 38, n. 6, pp. 1111–1119

    Google Scholar 

  • Celata G.P., Cumo M. and Mariani A. (1997), Geometrical Effects on the Subcooled Flow Boiling Critical Heat Flux, Proc. 4th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Vol. II, pp. 867–872, Bruxelles, June

    Google Scholar 

  • Chang S.H., Baek W.P. and Bae T.M. (1991), A Study of Critical Heat Flux for Low Flow of Water in Vertical Round Tubes under Low Pressure, Nuclear Engineering and Design, Vol. 132, pp. 225–237

    Google Scholar 

  • Chen J.C., Sundaram R.K. and Ozkaynak F.T. (1977), A Phenomenological Correlation for Post-CHF Heat Transfer, Lehigh University, NUREG-0237

    Google Scholar 

  • Chen X.J. and Zhou F.D. (1986), Forced Convection Boiling and Post Dryout Heat Transfer in Helical Coiled Tube, Proc. 8th International Heat Transfer Conference, Vol. 6, pp. 2221–2226, S. Francisco, August

    Google Scholar 

  • Collier J.G. and Thome J.R. (1994), Convective Boiling and Condensation, Third Edition, Clarendon Press, Oxford

    Google Scholar 

  • Costigan G., Holmes A.W and Ralph J.C. (1984), Steady-State Post-Dryout Heat Transfer in a Vertical Tube with Low Inlet Quality, Proc. 1st UK National Heat Transfer Conference, Vol. 1, pp. 1–11 ( IChemE Symp. Ser. n. 86 )

    Google Scholar 

  • Cumo M., Fabrizi F. and Palazzi G. (1978), The Influence of Inclination on CHF in Steam Generators Channels, CNEN Report, RT/ING (78)11

    Google Scholar 

  • Cumo M., Palazzi G., Urbani G. and Frazzoli F.V. (1980), Full Scale Tests on Axial Profile Heat Flux Influence on the Critical Quality in PWR Steam Generators, CNEN Report RT/ING (80)5

    Google Scholar 

  • Denham M K (1984), Inverted Annular Flow Film Boiling and the Bromley Model, Proc. 1st UK National Heat Transfer Conference, Vol. 1, pp. 13–23 ( IChemE Symp. Ser. n. 86 )

    Google Scholar 

  • Doroshchuk V.E., Levitan L.L., Lantzman E.P., Nigmatulin R.I. and Borevsky L.Ya. (1978), Investigation into Burnout Mechanism in Steam-Generating Tubes, Proc. 6th International Heat Transfer Conference, Vol. 1, pp. 393–398

    Google Scholar 

  • Doroshchuk V.E., Levitan L.L. and Lantzman F.P. (1975), Investigation into Burnout in Uniformly Heated Tubes, ASME Publication 75-WA/HT-22

    Google Scholar 

  • Dougall R.S. and Rohsenow W.M. (1963), Film Boiling on the Inside of Vertical Tubes with Upward Flow of the Fluid at Low Qualities, Mech. Engng. Dept. Engineering Project Laboratory, MIT Report 907926

    Google Scholar 

  • Fiori M.P. and Bergles A.E. (1968), Model of Critical Heat Flux in Subcooled Flow Boiling, MIT ReportDSR 70281–56

    Google Scholar 

  • Fiori M.P. and Bergles A.E. (1970), Model of Critical Heat Flux in Subcooled Flow Boiling, Proc. 4th International Heat Transfer Conference, Vol. VI, p. B6. 3, Hemisphere, New York

    Google Scholar 

  • Fung K.K., Gardiner S.R.M. and Groeneveld D.C. (1979), Subcooled and Low Quality Flow Boiling of Water at Atmospheric Pressure, Nuclear Engineering and Design, Vol. 55, pp. 51–57

    Google Scholar 

  • Gambill W.R. (1968), Burnout in Boiling Heat Transfer, Part II: Subcooled Forced-Convection Systems, Nuclear Safety, Vol. 9, n. 6, p. 467

    Google Scholar 

  • Gambill W.R. and Greene N.D. (1958), Boiling Burnout with Water in Vortex Flow, Chem. Eng. Prog., Vol. 54, n. 10, pp. 68–76

    Google Scholar 

  • Gambill W.R., Bundy R.D. and Wansbrough R.W. (1961), Heat Transfer, Burnout and Pressure Drop for Water in Swirl Flow through Tubes with Internal Twisted Tapes, Chem. Eng. Symp. Ser., Vol. 57, n. 32, pp. 127–137

    Google Scholar 

  • Ganic E.N. and Rohsenow W.M. (1976), Dispersed Flow Heat Transfer, Int. J. Heat Mass Transfer, Vol. 20, pp. 855–866

    Google Scholar 

  • Gaspari G.P. (1993), Comparison Among Data of Electrically and E-Beam Heated Tubes, Proc. 3rd International Workshop on High Heat Flux Components Thermal Hydraulics in Fusion Reactors, J. Schlosser, Ed., Cadarache, September

    Google Scholar 

  • Glickstein M.R. and Whitesides R.H. (1967), Forced Convection Nucleate and Film Boiling of Several Aliphatic Hydrocarbons, ASME Paper 67-HT-7, presented at the ASME-AIChE Heat Transfer, Seattle Govan A.H. ( 1984 ), Comparison of the Harwell Annular Flow Model with Critical Heat Flux Data, AERER 11298

    Google Scholar 

  • Govan A.H., Hewitt G.F., Owen D.G. and Bott T.R. (1988), An Improved CHF Modelling Code, Proc. 2nd UK National Conference on Heat Transfer, Vol. 1, pp. 33–48, IMechE, 14–16 September

    Google Scholar 

  • Groeneveld D.C. (1972), The Thermal Behaviour of a Heated Surface at and Beyond Dryout, Atomic Energy of Canada Report, AECL-4309

    Google Scholar 

  • Groeneveld D.C. (1973), Post-Dryout Heat Transfer at Reactor Operating Conditions, AECL-4513 Groeneveld D.C. (1981), Heat Transfer Phenomena Related to the Boiling Crisis, AECL-7239, Chalk River National Laboratory

    Google Scholar 

  • Groeneveld D.C. and Delorme G.G.J. (1976), Preciction of the Thermal Non-Equilibrium in the PostDryout Regime, Nuclear Engineering and Design, Vol. 36, pp. 17–26

    Google Scholar 

  • Groeneveld D.C., Cheng S.C. and Doan T. (1986), AECL-UO Critical Heat Flux Look-Up Table, Heat Transfer Engineering, Vol. 7, pp. 46–62

    Google Scholar 

  • Groeneveld D.C., Leung L.K.H., Kirillov P.L., Bobkov V.P., Smogalev I.P., Vinogradov V.N., Huang X.C. and Royer E. (1996), The 1995 Look-up Table for Critical Heat Flux in Tubes, Nuclear Engineering and Design, Vol. 163, pp. 1–23

    Google Scholar 

  • Gunther F.C. (1951), Photographic Study of Surface-Boiling Heat Transfer to Water with Forced Convection, Trans. ASME, Vol. 73, n. 2, pp. 115–123

    Google Scholar 

  • Hancox W.T. and Nicoll W.B. (1973), On the Dependence of the Flow-Boiling Heat Transfer Crisis on Local Near-Wall Conditions, 73-HT-38, ASME

    Google Scholar 

  • Hebel W., Detavernier A. and Decreton M. (1981), A Contribution to the Hydrodynamics of Boiling Crisis in a Forced Flow of Water, Nuclear Engineering and Design, Vol. 64, pp. 433–445

    Google Scholar 

  • Hein D. and Köhler W. (1984), A Simple-To-Use Post-Dryout Heat Transfer Model Accounting for Thermal Non-Equilibrium, Report USNRC-NUREG/CP-0060, pp. 369–372

    Google Scholar 

  • Herkenrath H., Mork-Morkenstein P., Jung U. and Weckermann F.J. (1967), Heat Transfer in Water with Forced Circulation in 140–150 bar Pressure Range, EUR 3658d

    Google Scholar 

  • Hewitt G.F. (1978), Critical Heat Flux in Flow Boiling, Proc. 6th International Heat Transfer Conference, Toronto

    Google Scholar 

  • Hewitt G.F. (1980), Burnout, in Handbook of Multiphase Systems, Hetsroni G., Ed. McGrawHill, pp. 6. 666. 141

    Google Scholar 

  • Hewitt G.F. and Govan A.G. (1989), Phenomenological Modelling of Non-Equilibrium Flows with Phase Change, Proc. EUROTHERM Seminar 7, Thermal Non-Equilibrium in Two-Phase Flow, pp. 7–40, ENEA, 23–24 March

    Google Scholar 

  • Hewitt G.F. and Hall-Taylor N.S. (1970), Annular Two-Phase Flow, Pergamon Press, New York

    Google Scholar 

  • Hewitt G.F., Kearsey H.A., Lacey P.M.C. and Pulling D.J. (1963), Burnout and Nucleation in Climbing Film Flow, Int. J. Heat Mass Transfer, Vol. 8, p. 793

    Google Scholar 

  • Hewitt G.F., Kearsey H.A., Lacey P.M.C. and Pulling D.J. (1965), Burnout and Film Flow in the Evaporation of Water in Tubes, Proc. Inst. Mech. Eng., Vol. 80, Part 3C, p. 206

    Google Scholar 

  • Hino R. and Ueda T. (1985), Studies on Heat Transfer and Flow Characteristics in Subcooled Flow Boiling–Part 2: Flow Characteristics, Int. J. Multiphase Flow, Vol. 11, pp. 283–298

    Google Scholar 

  • Hsu Y.Y and Graham R.W. (1986), Transport Processes in Boiling and Two-Phase Systems, American Nuclear Society, La Grange Park, Il, USA

    Google Scholar 

  • Iloeje O.C., Plummer D.N., Rohsenow W.M. and Griffith P. (1974), A Study of Wall Rewet and Heat Transfer in Dispersed Vertical Flow, Mech. Engng. Dept. MIT, Report 72718–92, September

    Google Scholar 

  • Inasaka F. and Nariai H. (1996), Evaluation of Subcooled Critical Heat Flux Correlations for Tubes with and without Internal Twisted Tapes, Nuclear Engineering and Design, Vol. 163, pp. 225–239

    Google Scholar 

  • Jensen M.K. (1984), A Correlation for Predicting the Critical Heat Flux Condition with Twisted-Tape Swirl Generators, Int. J. Heat Mass Transfer, Vol. 27, pp. 2171–2173

    Google Scholar 

  • Jensen M.K. and Bergles A.E. (1981), Critical Heat Flux in Helically Coiled Tubes, Trans. ASME, Vol. 103, n. 4, pp. 660–666

    Google Scholar 

  • Jones O.C. and Zuber N. (1977), Post-CHF Heat Transfer - A Non-Equilibrium Relaxation Model, ASME Paper 77-HT-79 presented at the 17th National Heat Transfer Conference, Salt Kake City, August

    Google Scholar 

  • Kaji M., Mori K., Nakanishi S., Hirabayashi K. and Ohishi M. (1996), Dryout and Wall-Temperature Fluctuations in Helically Coiled Evaporating Tubes, Heat Transfer-Japanese Research, Vol. 24, n. 3, pp. 239–254

    Google Scholar 

  • Katto Y. (1986), Forced-Convection Boiling in Uniformly Heated Channels, in Handbook of Heat and Mass Transfer, Vol. 1: Heat Tranfer Operations, Cheremisinoff N.P., Ed., Gulf Publishing Company, Houston, Chapter 9, pp. 303–325

    Google Scholar 

  • Katto Y. (1990a), A Physical Approach to Critical Heat Flux of Subcooled Flow Boiling in Round Tubes, Int. J. Heat Mass Transfer, Vol. 33, n. 4, pp. 611–620

    Google Scholar 

  • Katto Y. (1990b), Prediction of Critical Heat Flux of Subcooled Flow Boiling in Round Tubes, Int. J. Heat Mass Transfer, Vol. 33, n. 9, pp. 1921–1928

    Google Scholar 

  • Katto Y. (1992), A Prediction Model of Subcooled Water Flow Boiling CHF for Pressure in the Range 0.120 MPa, Int. J. Heat Mass Transfer, Vol. 35, n. 5, pp. 1115–1123

    Google Scholar 

  • Katto Y. (1994), Critical Heat Flux, Int. J. Multiphase Flow, Vol. 20, Suppl., pp. 563–90

    Google Scholar 

  • Katto Y. (1995), Critical Heat Flux Mechanisms, Proc. Eng. Foundation Convective Flow Boiling Conference, Keynote Lecture V, Banff, May

    Google Scholar 

  • Katto Y. and Olmo H. (1984), An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes, Int. J. Heat Mass Transfer, Vol. 26, n. 8 pp. 1641–1648

    Google Scholar 

  • Keeys R.K.F., Ralph J.C. and Roberts D.N. (1972), Post Burnout Heat Transfer in High Pressure Steam-Water Mixtures in a Tube with Cosine Heat Flux Distribution, Progress in Heat and Mass Transfer, Vol. 6, pp. 99–118

    Google Scholar 

  • Kefer V., Köhler W. and Kastner W. (1989), Critical Heat Flux (CHF) and Post-CHF Heat Transfer in Horizontal and Inclined Evaporator Tubes, Int. J. Multiphase Flow, Vol. 15, n. 3, pp. 385–392

    Google Scholar 

  • Kirby G.J., Staniforth R. and Kinneir J.H. (1967), A Visual Study of Forced Convective Boiling. Part II: Flow Patterns and Burnout for a Round Test Section, AEEW - R506

    Google Scholar 

  • Kirillov P.L., Kahcheyev V.M., Muranov Yu.V. and Yuriev Yu.S. (1987), A Two-Dimensional Mathematical Model of Annular-Dispersed and Dispersed Flows–Parts I and II, Int. J. Heat Mass Transfer, Vol. 30, n. 4, pp. 791–806

    MATH  Google Scholar 

  • Kovalev S.A. (1976), Heat Transfer Crisis of Boiling of Subcooled Water on a Finned Surface Under Forced Convection Conditions, Heat Transfer-Soviet Research, Vol. 8, n. 4, p. 73

    Google Scholar 

  • Kramer T.J. (1976), Fluid Flow and Convective Heat Transfer in Square Capillary Ducts Subjected to Nonuniform High Heat Flux, ASME Paper 76-WA-HT-29

    Google Scholar 

  • Kutateladze S.S. and Leontiev A.I. (1966), Some Applications of the Asymptotic Theory of the Turbulent Boundary Layer, Proc. 3rd International Heat Transfer Conference, Vol. 3, pp. 1–6, Chicago, Il, August Lautenschlager G. and Mayinger F. (1986), Post-Dryout Heat Transfer to R 12 in a Circular 90-Deg-Tube-Bend, Proc. 8th International Heat Transfer Conference, Vol. 6, pp. 2373–2378

    Google Scholar 

  • Lee C.H. and Mudawwar I. (1988), A Mechanistic Critical Heat Flux Model for Subcooled Flow Boiling Based on Local Bulk Flow Conditions, Int. J. Multiphase Flow, Vol. 14, pp. 711–728

    Google Scholar 

  • Lee D.H. (1965), An Experimental Investigation of Forced Convection Burnout in High Pressure Water. Part 4. Large Diameter Tubes at About 1600 plia, AEEW-R 479

    Google Scholar 

  • Lee D.H. (1977), Prediction of Burnout, in Two-Phase Flow and Heat Transfer, Butterworth D. and Hewitt G.F., Eds., Oxford University Press, Oxford, pp. 295–322

    Google Scholar 

  • Lee D.H. and Obertelli J.D. (1963), An Experimental Investigation of Forced Convection Boiling in High Pressure Water. Part I, AEEW-R 213

    Google Scholar 

  • Lee S., Inone A. and Takahashi M. (1995), Critical Heat Flux Characteristics of R 113 Boiling Two-Phase Flow in Twisted Tape Inserted Tubes, Heat Transfer-Japanese Research, Vol. 24, n. 3, pp. 272–287

    Google Scholar 

  • Lin W.S., Lee C.H. and Pei B.S. (1989), An Improved Theoretical Critical Heat Flux Model for Low-Quality Flow, Nuclear Technology, Vol. 88, pp. 294–306, December

    Google Scholar 

  • Liu Q.S., Shiotsu M. and Sakurai A. (1992), A Correlation for Forced Convection Film Boiling Heat Transfer from a Hot Cylinder under Subcooled Conditions, Fundamentals of Subcooled Flow Boiling, HTD-Vol. 217, pp. 21–32

    Google Scholar 

  • Lombardi C. and Mazzola A. (1998), A Criterion Based on Independent Parameters for Distinguishing Departure from Nucleate Boiling and Dryout in Water Cooled Systems, Revue Generale de Thermique, Vol. 37, n. 1, pp. 31–38

    Google Scholar 

  • Mattson R.J., Hammit F.G. and Tong L.S. (1973), A Photographic Study of the Subcooled Flow Boiling Crisis in Freon-113, ASME Paper 73-HT-39

    Google Scholar 

  • Matzner B. (1963), Basic Experimental Studies of Boiling Fluid Flow and Heat Transfer at Elevated Pressures, TID 18978

    Google Scholar 

  • Mazzola A. (1997), Integrating Artificial Neural Networks and Empirical Correlations for the Prediction of Water Subcooled Critical Heat Flux, Revue Generale de Thermique, Vol. 36, n. 11, pp. 799–806

    Google Scholar 

  • Merilo M. (1977), Critical Heat Flux Experiments in a Vertical and Horizontal Tube with Both Freon-12 and Water as Coolant, Nuclear Engineering & Design, Vol. 44, n. 1, pp. 1–16

    Google Scholar 

  • Mishima K. (1984), Boiling Burnout at Low Flow Rate and Low Pressure Conditions, Ph.D. Thesis, Kyoto University, Japan

    Google Scholar 

  • Moon S.K. and Chang S.H. (1994), Classification and Prediction of the Critical Heat Flux using Fuzzy Clustering and Artificial Neural Networks, Nuclear Engineering and Design, Vol. 150, pp. 151–161

    Google Scholar 

  • Moon S.K., Baek W.P. and Chang S.H. (1996), Parametric Trends Analysis of the Critical Heat Flux Based on Artifical Neural Networks, Nuclear Engineering and Design, Vol. 163, pp. 29–49

    Google Scholar 

  • Moose R.A. and Ganic E.N. (1982), On the Calculation of Wall Temperatures in the Post-Dryout Heat Transfer Region, Int. J. Multiphase Flow, Vol. 8, n. 5, pp. 525–542

    MATH  Google Scholar 

  • Mori H., Yoshida S., Ohno M., Kusumoto K. and Itoh T. (1990), Critical Heat Flux for Non-Azeotropic Binary Mixtures at High Pressures, Proceedings of JSME, No. 908–2, Saga, pp. 210–214

    Google Scholar 

  • Motte E.I. and Bromley L.A. (1957), Film Boiling of Flowing Subcooled Liquids, Ind. and Engng. Chem., Vol. 49, n. 11, pp. 1921–1928

    Google Scholar 

  • Naboichenko K.V., Kiryutin A.A. and Gribov B.S. (1965), A Study of Critical Heat Flux with Forced Flow of Monoisopropyldeiphenyl-Benzene Mixture, Teploenergetika, Vol. 12, n. 11, pp. 81–86

    Google Scholar 

  • Nariai H. and Inasaka F. (1992), Critical Heat Flux and Flow Characteristics of Subcooled Flow Boiling with Water in Narrow Tubes, in Dynamics of Two-Phase Flows, Jones O.C. and Michiyoshi I. Eds., CRC Press, pp. 689–708

    Google Scholar 

  • Nariai H., Inasaka F. and Shimura T. (1987), Critical Heat Flux of Subcooled Flow Boiling in Narrow Tube, ASME-JSME Thermal Engineering Joint Conference, Honolulu, March

    Google Scholar 

  • Nariai H., Inasaka F., Fujisaki W. and Ishiguro H. (1992), Critical Heat Flux of Subcooled Flow Boiling in Tubes with Internal Twisted Tapes, Proc. ANS Winter Meeting (THD), pp. 38–46, San Francisco, November

    Google Scholar 

  • Nariai H., Inasaka F., Ishikawa A. and Fujisaki W. (1992), Critical Heat Flux of Subcooled Flow Boiling in Tube with Internal Twisted Tape Under Non-Uniform Heating Conditions, Proc. 2nd JSME-KSME Thermal Engineering Conference, Vol. 3, pp. 285–288

    Google Scholar 

  • Newbold F.J., Ralph J.C. and Ralph J.A. (1976), Post-Dryout Heat Transfer under Low Flow and Low Quality Conditions, AERE-R 8390

    Google Scholar 

  • Nishikawa K., Yoshida S., Mori H. and Takamatsu H. (1986), Post-Dryout Heat Transfer to Freon in a Vertical Tube at High Subcritical Pressures, Int. J. Heat Mass Transfer, Vol. 29, n. 8, pp. 1245–1251

    Google Scholar 

  • Obot N.T. and Ishii M. (1988), Two-Phase Flow Regime Transition Criteria in Post-Dryout Region Based on Flow Visualization Experiments, Int. J. Heat Mass Transfer, Vol. 31, n. 12, pp. 2559–2570

    Google Scholar 

  • Papell S.S. (1970), Buoyancy Effects on Liquid Nitreogen Film Boiling in Vertical Flow, Advances in Cryogenic Engng., Vol. 16, pp. 435–444

    Google Scholar 

  • Papell S.S. (1971), Film Boiling of Cryogenic Hydrogen during Upward and Downward Flow, Paper NASA-TMX-67855 presented at the 13th Int. Congress on Refrigeration, Washington

    Google Scholar 

  • Papell S.S., Simoneau R.J. and Brown D.D. (1966), Buoyancy Effects on Critical Heat Flux of Forced Convective Boiling in Vertical Flow, NASA-TND-3672

    Google Scholar 

  • Plummer D.N., Griffith P. and Rohsenow W.M. (1977), Post-Critical Heat Transfer to Flowing Liquid in a Vertical Tube, J. Heat Transfer, Vol. 4, pp. 151–158

    Google Scholar 

  • Purcupile J.C. and Gouse S.W. Jr. (1972), Reynolds Flux Model of Critical Heat Flux in Subcooled Forced Convection Boiling, ASME Paper 72-HT-4

    Google Scholar 

  • Rohsenow W.M. (1988), Post-Dryout Heat Transfer Prediction Method, Int. Comm. Heat Mass Transfer, Vol. 15, pp. 559–569

    Google Scholar 

  • Schlosser J., Cardella A., Massmann P., Chappuis P., Falter H.D., Deschamps P. and Deschamps D.H. (1991), Thermal Hydraulic Tests on NET Divertor Targets Using Swirl Tubes, Proc. ANS Winter Meeting. (THD), pp. 26–31, San Francisco, CA, November

    Google Scholar 

  • Schmidt KR. (1959), Wärmetechnische Untersuchungen and Hoch Belasteten Kesselheizflächen, Mitteinlungen der Vereinigung der Grosskessel-bezitzer, December, pp. 391–401

    Google Scholar 

  • Slaughterback D.C., Veseley E.W., Ybarrondo L.J., Condie K.G. and Mattson R.J. (1973a) Statistical Regression Analyses of Experimental Data for Flow Film Boiling Heat Transfer, Paper presented at the ASME-AIChE Heat Transfer Conference, Atlanta, August

    Google Scholar 

  • Slaughterback D.C., Ybarrondo L.J. and Obenchain C.F. (1973b), Flow Film Boiling Heat Transfer Correlations - Parametric Study with Data Comparison, Paper presented at the ASME-AIChE Heat Transfer Conference, Atlanta August

    Google Scholar 

  • Smith R.A. (1986), Boiling Inside Tubes: Critical Heat Flux for Upward Flow in Uniformly Heated Tubes, ESDU Data Item No. 86032, Engineering Science Data Unit International Ltd., London

    Google Scholar 

  • Smogalev I.P. (1981), Calculation of Critical Heat Fluxes with Flow of Subcooled Water at Low Velocity, Thermal Engineering, Vol. 28, n. 4, pp. 208–211

    Google Scholar 

  • Staub F.W. (1968), The Void Fraction in Subcooled Boiling–Prediction of Vapour Volumetric Fraction, J. Heat Transfer, Vol. 90, pp. 151–157

    Google Scholar 

  • Sterman L., Abramov A. and Checheta G. (1968), Investigation of Boiling Crisis at Forced Motion of High Temperature Organic Heat Carriers and Mixtures, Int. Symposium on Research into Co-current Gas-Liquid Flow, Univ. of Waterloo, Ontario, Canada, Paper E2

    Google Scholar 

  • Styrikovich M.A., Newstrueva E.I. and Dvorina G.M. (1970), The Effect of Two-Phase Flow Pattern on the Nature of Heat Transfer Crisis in Boiling, Proc. 4th International Heat Transfer Conference, Vol. 9, pp. 360–362, Hemisphere, New York

    Google Scholar 

  • Swenson H.S., Carver J.R. and Szoeke G. (1961), The Effects of Nucleate Boiling versus Film Boiling on Heat Transfer in Power Boiler Tubes, ASME Paper 61-W-201, presented at ASME Winter Annual Meeting, New York, 26 November-1 December

    Google Scholar 

  • Theofanous T.G. (1996), Introduction to a Round Table Discussion on Reactor Power Margius, Nuclear Engineering and Design, Vol. 163, pp. 213–282

    Google Scholar 

  • Thom J.R.S., Walker W.W., Fallon T.A. and Reising G.F.S. (1965), Boiling in Subcooled Water During Flow Up Heated Tubes or Annuli, Symposium on Boiling Heat Transfer in Steam Generating Units and Heat Exchangers, Paper 6, Manchester, IMechE, September

    Google Scholar 

  • Thome J.R. (1990), Enhanced Boiling Heat Transfer, Hemisphere Publ. Corp., New York

    Google Scholar 

  • Thorgerson E.J., Knoebel D.H. and Gibbons J.G. (1974), A Model to Predict Convective Subcooled Critical Heat Flux, J. Heat Transfer, Vol. 96, pp. 79–82

    Google Scholar 

  • Tippets F.E. (1962), Critical Heat Fluxes and Flow Patterns in High Pressure Boiling Water Flows, Paper 62-WA-162 presented at the ASME Winter Annual Meeting, New York, 25–30 November

    Google Scholar 

  • Tolubinsky V.I. and Matorin P.S. (1973), Forced Convective Boiling Heat Transfer Crisis with Binary Mixtures, Heat Transfer-Soviet Research, Vol. 5, n. 2, pp. 98–101

    Google Scholar 

  • Tong L.S. (1966), Boundary Layer Analysis of the Flow Boiling Crisis, Proc. 3rd International Heat Transfer Conference, Vol. III, pp. 1–6, Hemisphere, New York

    Google Scholar 

  • Tong L.S. (1968), Boundary-Layer Analysis of the Flow Boiling Crisis, Int. J. Heat Mass Transfer, Vol. 11, pp. 1208–1211

    Google Scholar 

  • Tong L.S. (1969), Critical Heat Fluxes in Rod Bundles, Proc. Symp. on Two-Phase Flow and Heat Transfer in Rod Bundles, ASME Winter Annual Meeting, Los Angeles, CA, pp. 31–46

    Google Scholar 

  • Tong L.S. (1975), A Phenomenological Study of Critical Heat Flux, ASME Paper 75-HT-68

    Google Scholar 

  • Tong L.S. and Hewitt G.F. (1972), Overall View Point of Film Boiling CHF Mechanisms, ASME Paper No. 72-HT-54

    Google Scholar 

  • Tong L.S., Currin H.B. and Larsen T.S. (1966), Influence of Axially Non-Uniform Heat Flux on DNB, WCAP-2767, Published in CEP Symp. Ser., Vol. 62

    Google Scholar 

  • Tong L.S., Currin H.B. and Thorp A.G. (1968), An Evaluation of the Departure from Nucleate Boiling in Bundles of Reactor Fuel Rods, Nuclear Science Engineering, Vol. 33, pp. 7–15

    Google Scholar 

  • Tong L.S., Currin H.B., Larsen P.S. and Smith D.G. (1966), Influence of Axially Non-Uniform Heat Flux on DNB, Chem. Eng. Prog. Symp. Ser., Vol. 62, n. 64, p. 35

    Google Scholar 

  • Tong L.S., Currin H.B., Larsen P.S. and Smith O.G. (1965), Influence of Axially Non-Uniform Heat Flux on DNB, AIChE Symposium Series, Vol. 64, pp. 35–40

    Google Scholar 

  • Unal C., Tuzla K., Badr O., Neti S. and Chen J.C. (1988), Parametric Trends for Post-CHF Heat Transfer in Rod Bundles, J. Heat Transfer, Vol. 110, pp. 721–727

    Google Scholar 

  • van der Molen S.B. and Galjee F.W.B.M. (1978), The Boiling Mechanism during Burnout Phenomena in Subcooled Two-Phase Water Flow, Proc. 6th International Heat Transfer Conference, Vol. 1, pp. 381385, Hemisphere, New York

    Google Scholar 

  • Vandervort C.L., Bergles A.E. and Jensen M.K. (1992), The Ultimate Limits of Forced Convective Sub-cooled Boiling Heat Transfer, RPI Interim Report HTL-9 DE-FG02–89ER14019

    Google Scholar 

  • Wang M.J. and Mayinger F. (1995), Post-Dryout Dispersed Flow in Circular Bends, Int. J. Multiphase Flow, Vol. 21, n. 3, pp. 437–454

    MATH  Google Scholar 

  • Wang S.W. and Weisman J. (1983), Post-Critical Heat Flux Heat Transfer: A Survey of Current Correlations and their Applicability, Progress in Nuclear Energy, Vol. 12, n. 2, pp. 149–168

    Google Scholar 

  • Weatherhead R.J. (1963), Nucleate Boiling Characteristics and the Critical Heat Flux Occurrence in Sub-cooled Axial Flow Water Systems, ANL 6675

    Google Scholar 

  • Weisman J. (1992), The Current Status of Theoretically Based Approaches to the Prediction of the Critical Heat Flux in Flow Boiling, Nuclear Technology, Vol. 99, pp. 1–21, July

    Google Scholar 

  • Weisman J. and Ileslamlou S. (1988), A Phenomenological Model for Prediction of Critical Heat Flux under Highly Subcooled Conditions, Fusion Technology, Vol. 13, pp. 654–659 (Corrigendum in Fusion Technology, Vol. 15, p. 1463–1989 )

    Google Scholar 

  • Weisman J. and King S.H. (1983), Theoretically Based CHF Prediction at Low Qualities and Intermediate Flows, Transaction American Nuclear Society, Vol. 45, pp. 832–833

    Google Scholar 

  • Weisman J. and Pei B.S. (1983), Prediction of Critical Heat Flux in Flow Boiling at Low Qualities, Int. J. Heat Mass Transfer, Vol. 26, pp. 1463–1477

    Google Scholar 

  • Wesman J. and Ying S.H. (1983), Theoretically Based CHF Prediction at Low Qualities and Intermediate Flows, Transactions American Nuclear Society, Vol. 45, pp. 832–833

    Google Scholar 

  • Whalley P.B. (1987), Boiling, Condensation, and Gas-Liquid Flow, Clarendon Press, Oxford, pp. 163–166

    Google Scholar 

  • Whalley P.B., Azzopardi B.J., Hewitt G.F. and Owen R.G. (1982), A Physical Model of Two-Phase Flow with Thermodynamic and Hydrodynamic Non-Equilibrium, Proc. 7th International Heat Transfer Conference, Vol. 5, pp. 181–188, Munich, August

    Google Scholar 

  • Whalley P.B., Hutchinson P. and Hewitt G.F. (1974), The Calculation of Critical Heat Flux in Forced Convection Boiling, Proc. 5th Int. Heat Transfer Conference, Tokyo, Paper B6. 11

    Google Scholar 

  • Yagov V.V., Puzin V.A. and Kudryavtsev A.A. (1987), Investigation of the Boiling Crisis and Heat Transfer in Dispersed-Film Boiling of Liquids in Channels, Heat Transfer-Soviet Research, Vol. 19, n. 1, pp. 1–8

    Google Scholar 

  • Yapo T., Embrechts M.J., Cathey S.T. and Lahey R.T. (1992), Prediction of Critical Heat Fluxes using a Hybrid Kohonen-backpropagation Neural Networks, in Topics in Intelligent Engineering Systems Through Artificial Neural Networks, Dali C.H. et al., Eds., Vol. 2, ASME Press, New York

    Google Scholar 

  • Yin S.T., Liu T.J., Huang Y.D. and Tain R.M. (1988), An Investigation of the Limiting Quality Phenomenon of Critical Heat Flux, in Particulate Phenomena and Multiphase Transport, Veziroglu T.S. Ed., Hemisphere Publishing Corporation, Washington, Vol. 2, pp. 157–173

    Google Scholar 

  • Yoo S.J. and France D.M. (1996), Post-CHF Heat Transfer with Water and Refrigerants, Nuclear Engineering and Design, Vol. 163, pp. 163–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Celata, G.P., Mariani, A. (2003). Critical Heat Flux, Post-CHF Heat Transfer and Their Augmentation. In: Bertola, V. (eds) Modelling and Experimentation in Two-Phase Flow. International Centre for Mechanical Sciences, vol 450. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2538-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2538-0_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-20757-4

  • Online ISBN: 978-3-7091-2538-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics