Two-Phase Flow Measurement Techniques

  • Volfango Bertola
Part of the International Centre for Mechanical Sciences book series (CISM, volume 450)


In these notes the most common measurement techniques for two-phase flows are reviewed. The working principles and the configurations of instruments for void fraction measurements, flow visualization and velocity measurements are presented; in detail: radiation attenuation, optical and electrical impedance techniques for void fraction measurement; tomographic and time-average visualization techniques; velocity measurements from signal cross-correlation, hot film anemometry, particle image velocimetry.


Particle Image Velocimetry Void Fraction Multiphase Flow Total Internal Reflection Optical Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abuaf, N., Jones, O.C., Zimmer, G.A. (1978), Optical probe for local void fraction and interface velocity measurements, Rev. Sci. Instrum. 49: 1090–1094.CrossRefGoogle Scholar
  2. Adrian, R.J. (1991), Particle-Imaging Techniques for Experimental Fluid Mechanics, Annu. Rev. Fluid Mech. 22: 261–304.CrossRefGoogle Scholar
  3. Adrian, R.J. (1996), Laser Velocimetry. In: R.J. Goldstein (Ed.), Fluid Mechanic Measurements, New York: Taylor&Francis.Google Scholar
  4. Albouelwafa, M.S.A., Kendall, E.J.M. (1979), Analysis and design of helical capacitance sensors for volume fraction determination, Rev. Sci. Instrum. 50: 872–878.CrossRefGoogle Scholar
  5. Al-Deen, M.F.N., Samways A.L., Bruun, H.H. (1996), Water flow studies using split-film anemometry Meas. Sci. Technol. 7: 1529–1535.CrossRefGoogle Scholar
  6. Andreussi, P., Di Donfrancesco, A., and Messia, M. (1988), An Impedance Method for the Measurement of Liquid Hold-Up in Two Phase Flow, Int. J. Multiphase Flow, 14: 777–785.CrossRefGoogle Scholar
  7. Asali, J.C., Hanratty, T.J. and Andreussi, P. (1985), Interfacial Drag and Film Height for Vertical Annular Flow, AIChE J 31: 895–902.CrossRefGoogle Scholar
  8. Beck M.S., Williams R.A. (1996), Process tomography; a European innovation and its applications, Meas. Sci. Technol. 7: 215–224.CrossRefGoogle Scholar
  9. Bendat J.S., Piersol A.G. (1971), Random Data: Analysis and Measurement Procedures, New York: Wiley.MATHGoogle Scholar
  10. Bertola, V. (2002a), Optical Probe Visualization of Air-Water Flow Structure through a Sudden Area Contraction, Exp. Fluids 32(4): 481–486.Google Scholar
  11. Bertola, V. (2002b), Slug Velocity Profiles in Horizontal Gas-Liquid Flow, Exp. Fluids 32(6): 722–727.Google Scholar
  12. Bonn, D., Ross, D. (2001), Wetting transitions, Rep. Prog. Phys. 64: 1085–1163.CrossRefGoogle Scholar
  13. Brown, R.C., Andreussi, P. and Zanelli, S. (1978), The Use of Wire Probes for the Measurement of Liquid Thickness in Annular Gas-Liquid Flows, Can. J. Chem. Eng. 56: 754–757.CrossRefGoogle Scholar
  14. Bruggeman, D.A.G. (1935), Calculation of Different Physical Constants of Heterogeneous Substances, Ann. Phys. 24: 636–679.CrossRefGoogle Scholar
  15. Bruun, H.H. (1995), Hot-wire Anemometry, Oxford: Oxford University Press.Google Scholar
  16. Bruun H H, Samways A L and Ali J (1995), A hot-film study of oil/water flow in vertical pipes. Proc. 2nd Int. Conf. on Multiphase Flow (Kyoto, Japan, 3–7 April) paper P1, pp 61–67.Google Scholar
  17. Cartellier, A. (1990), Optical probes for local void fraction measurements: characterization of performance, Rev. Sci. Instrum. 61: 874–886CrossRefGoogle Scholar
  18. Cartellier, A. (1992) Simultaneous void fraction measurement, bubble velocity and size estimate using a single optical probe in gas—liquid two-phase flows, Rev. Sci. Instrum. 63: 5442–5453CrossRefGoogle Scholar
  19. Cartellier, A., Achard, J.L. (1991), Local phase detection probes in fluid/fluid two-phase flows, Rev. Sci. Instrum. 62: 279–303.CrossRefGoogle Scholar
  20. Cartellier, A., Barrau, E. (1998a), Monofiber optical probes for gas detection and gas velocity measurements: Conical probes, Int. J. Multiphase Flow 24(8): 1265–1294.Google Scholar
  21. Cartellier, A., Barrau, E. (1998b), Monofiber optical probes for gas detection and gas velocity measurements: Optimised sensing tips, Int. J. Multiphase Flow 24(8): 1295–1315.Google Scholar
  22. Ceccio, S.L., George, D.L. (1996), A Review of Electrical Impedance Techniques for the Measurement of Multiphase Flow, ASMEJ. Fluid Eng. 118: 391–399.CrossRefGoogle Scholar
  23. Censor, Y. (1983), Finite series-expansion reconstruction methods, Proc. IEEE 71(3): 409–419.Google Scholar
  24. Chanson, H. (2002), Air-Water Flow Measurements with Intrusive, Phase-Detection Probes: Can We Improve Their Interpretation? J. Hydr. Eng. 128: 252–255.CrossRefGoogle Scholar
  25. Chaucki, J. Laracki, F., Dudukovic, M.P. (1997), Noninvasive tomographic and velocimetric monitoring of multiphase flows, Ind. Eng. Chem. Res. 36: 4476–4503.CrossRefGoogle Scholar
  26. Chigier, N. (1983), Drop size and velocity instrumentation, Prog. Energy Combustion Sci. 9: 155–177.CrossRefGoogle Scholar
  27. Chigier, N. (1991), Optical imaging of sprays, Prog. Energy Combustion Sci. 17: 211–262.CrossRefGoogle Scholar
  28. Coney, M.W.E. (1973), The Theory and Application of Conductance Probes for the Measurement of Liquid Film Thickness in Two Phase Flow, J. Phys. E: Scient. Instrum. 6: 903–910.CrossRefGoogle Scholar
  29. Costigan, G., Whalley, P.B. (1997), Slug Flow Regime Identification from Dynamic Void Fraction Measurement in Vertical Air-Water Flows, Int. J. Multiphase Flow 23: 263–282.CrossRefMATHGoogle Scholar
  30. Cartellier, A., Barrau, E. (1998a), Monofiber optical probes for gas detection and gas velocity measurements: Conical probes, Int. J. Multiphase Flow 24(8): 1265–1294.Google Scholar
  31. Cartellier, A., Barrau, E. (1998b), Monofiber optical probes for gas detection and gas velocity measurements: Optimised sensing tips, Int. J. Multiphase Flow 24(8): 1295–1315.Google Scholar
  32. Cenedese, A., Romano, G.P., Paglialunga, A., Terlizzi, M. (1992), Neural net for trajectories recognition in a flow, Sixth Mt. Symp. on Applications of Laser Techniques to Fluid Mechanics (Lisbon) pp 27.1.127. 1. 6.Google Scholar
  33. Delhaye, J.M. (1969), Hot-film anemometry, in: Le Tourneau, B.W., Bergles, A.E. (Eds.), Two-Phase Flow Instrumentation, New York: ASME International.Google Scholar
  34. Devia, F., Fossa, M. (2003), Design and optimisation of impedance probes for void fraction measurements, Flow Measurement and Instrumentation 14(4–5): 139–149.Google Scholar
  35. Dias, I., Riethmuller, M.L. (1998), PIV in two-phase flows: Simultaneous bubble sizing and liquid velocity measurements, Proc. 9th Symposium on Laser techniques to fluid mechanics, New York: Springer-Verlag.Google Scholar
  36. Durst, F., Melling, A., Whitelaw, J.H. (1981), Principles and practice of Laser Doppler Anemometry (211d ed.), New York: Academic Press.Google Scholar
  37. Elkow, K.J., Rezkallah, K.S. (1996), Void fraction measurements in gas-liquid flows using capacitance sensors, Meas. Sci. Technol. 7: 1153–1163.CrossRefGoogle Scholar
  38. Elkow, K.J., Rezkallah, K.S. (1997), Void fraction measurements in gas-liquid flows under 1-g and µ-g conditions using capacitance sensors, Int. J. Multiphase Flow 23: 815–829.CrossRefMATHGoogle Scholar
  39. Farrar, B., Bruun, H.H. (1989), Interaction effects between a cylindrical hot-film anemometer probe and bubbles in air/water and oil/water flow, J. Phys. E: Sci. Instrum. 22: 114–123.CrossRefGoogle Scholar
  40. Farrar B., Samways A.L., Ali J., Bruun, H.H. (1995), A computer based hot-film technique for two-phase flow measurements, Meas. Sci. Technol. 6: 1528–1537.CrossRefGoogle Scholar
  41. Fordham, E.J., Holmes, A., Ramos, R.T., Simonian, S., Huang, S.-M., Lein, C.P. (1999a), Multi-phasefluid discrimination with local fibre-optical probes: I. Liquid/liquid flows, Meas. Sci. Technol. 10: 1329–1337.CrossRefGoogle Scholar
  42. Fordham, E.J., Simonian, S., Ramos, R.T., Holmes, A., Huang, S.-M., Lenn, C.P. (1999b), Multi-phasefluid discrimination with local fibre-optical probes: II. Gas/liquid flows, Meas. Sci. Technol. 10: 13381346.Google Scholar
  43. Fossa, M. (1998), Design and Performance of a Conductance Probe for Measuring the Liquid Fraction in Two-Phase Gas-Liquid Flows, J. Flow Meas. Instrum. 9: 103–109.CrossRefGoogle Scholar
  44. Fossa, M., Devia, F. (1999), Theoretical Performance of Impedance Probes for Void Fraction Measurements, Proc. XX International Congress of Refrigeration, Sydney, Australia.Google Scholar
  45. Galaup, J.P., Delhaye, J.M. (1976), Utilisation des sondes optiques miniatures en écoulement diphasique gaz-liquide, application à la mesure du taux de présence local et de vitesse local de la phase gazeuse, La Houille Blanche 1: 17–30.CrossRefGoogle Scholar
  46. George, D.L., Ceccio, S.L., O’Hern, T.J., Skollenberg, K.A., Torczynski, J.R. (1998), Advanced material distribution measurement in multiphase flows: a case study, Proc. ASME-FED 247: 31–42.Google Scholar
  47. Geraets, J.J.M., Borst, J.C. (1988), A capacitance sensor for two-phase void fraction measurement and flow pattern identification, Int. J. Multiphase Flow 14: 305–320.CrossRefGoogle Scholar
  48. Gladden, L.F. (1995), Industrial applications of NMR imaging, Eng. J. 56: 149–158.Google Scholar
  49. Gregory, G.A., Mattar, L. (1973), An in-situ volume fraction sensor for two-phase flow of non-electrolytes, J. Canad. Petrol. 12–13: 48–52.Google Scholar
  50. Guenther, R. (1990), Modern Optics, New York: Wiley.Google Scholar
  51. Hamad, F.A., Imberton, F., Bruun, H.H. (1997), An optical probe for measurements in liquid—liquid two-phase flow, Meas. Sci. Technol. 8: 1122–1132.CrossRefGoogle Scholar
  52. Hamad, F.A., Bruun, H.H. (2000), Evaluation of bubble/drop velocity and slip velocity by a single normal hot-film probe placed in a two-phase flow, Meas. Sci. Technol. 11: 11–19.CrossRefGoogle Scholar
  53. Hassan, Y.A., Blanchat, T.K., Seeley, C.H. Jr. (1992), PIV flow visualization using particle tracking techniques, Meas. Sci. Technol. 3: 633–642.CrossRefGoogle Scholar
  54. Hassan, Y.A., Philip, O.G. (1997), A new artificial neural network tracking technique for particle image velocimetry, Exp. Fluids 23: 145–154.CrossRefGoogle Scholar
  55. Heerens W.C. (1986), Application of capacitance techniques in sensor design, J. Phys. E: Sci. Instrum 19: 897–906.CrossRefGoogle Scholar
  56. Heitor M.V., Starner, S.H., Taylor, A.M.K.P., Whitelaw, J.H. (1993), Velocity, Size, and Turbulent Flux measurements by Laser Doppler Velocimetry. In: A.M.K.P. Taylor (Ed.), Instrumentation for flows with combustion, New York: Academic Press.Google Scholar
  57. Herman, G.T. (1980), Image reconstruction from projections - the fundamentals of computerized tomography, New York: Academic Press.MATHGoogle Scholar
  58. Hewitt, G.F. (1978), Measurements of Two-Phase Flow Parameters, New York: Academic Press.Google Scholar
  59. Hibiki, T., Mishima, K., Matsubayashi, M. (1995), Application of High-Frame-Rate Neutron Radiography with a Steady Thermal Neutron Beam to Two-Phase Flow Measurements in a Metallic Rectangular Duct, Nuclear Technology 110: 422–435.Google Scholar
  60. Hilgers, S., Merzkirch, W., Wagner, T. (1995), PIV measurements in multiphase flow using CCD- and photo-camera flow visualization and image processing of multiphase flow systems, Proc. 1995 ASME/JSME Fluids Engineering and Laser Anenometry Conf. Exh. FED 209: 151–154.Google Scholar
  61. Hinata, S. (1972), A study on the measurement of the local void fraction by the optical fibre glass probe, Bull. JSME 15 (88): 1228–1235.CrossRefGoogle Scholar
  62. Huang, S.M., Stott, A.L., Green, R.G., Beck, M.S. (1988), Electronic transducers for industrial measurement of low value capacitances, J. Phys. E. Sci. Instrum. 21: 242–250.CrossRefGoogle Scholar
  63. Jones, O.C., Delhaye, J.M. (1976), Transient and Statistical Measurement Techniques for Two-Phase Flows: a Critical Review. Int. J. Multiphase Flow 3: 89–116.CrossRefGoogle Scholar
  64. Kak, A.C., Slaney, M. (1988), Principles of computerized tomography imaging, New York: IEEE Press. Kang, H.C. Kim, M.H. (1992), The Development of a Flush Wire Probes and Calibration Method for Measuring Liquid Film Thickness, Int. J. Multiphase Flow 18: 423–437.Google Scholar
  65. Karapantios, T.D., Paras, S.V., Karabelas, A.J. (1989), Statistical Characteristics of Free Falling Films at High Reynolds Numbers, Int. J. Multiphase Flow 15: 1–21.CrossRefGoogle Scholar
  66. Kataoka, I., Ishii, M., Serizawa, A. (1986), Local formulation and measurements of interfacial area concentration in two-phase flow, Int. J. Multiphase Flow 12 (4): 505–529.CrossRefMATHGoogle Scholar
  67. Keane R.D., Adrian R. J. (1990) Meas. Sci. Technol. 1 1202.Google Scholar
  68. Kim, S., Fu, X.Y., Wang, X., Ishii, M. (2000), Development of the miniaturized four-sensor conductivity probe and the signal processing scheme, Int. J. Heat Mass Transfer 43: 4101–4118CrossRefMATHGoogle Scholar
  69. Koskie, J.E., Mudawar, I., Tiederman, W.G. (1989), Parallel Wire Probes for Measurements of Thick Liquid Films, Int. J. Multiphase Flow 15: 521–530.CrossRefGoogle Scholar
  70. Krane, K.S. (1988), Introductory Nuclear Physics. New York: Wiley.Google Scholar
  71. Kureta, M., Hibiki, T., Mishima, K., Akimoto, H. (1999), Visualization and void fraction measurement of subcooled boiling water flow in a narrow rectangular channel using high-rate neutron radiography, in: Two-Phase Flow Modelling and Experimentation 1999 (ed. Celata, G.P., Di Marco, P., Shah, K. ): 1509–1514, Pisa: Edizioni ETS.Google Scholar
  72. Le Gall, F., Pascal-Ribot, S., Leblond, J. (2001), Nuclear magnetic resonance measurements of fluctuations in air—water two-phase flow: Pipe flow with and without “disturbing” section, Phys. Fluids 13(5): 1118–1129.Google Scholar
  73. Liu T.J., Bankoff S.G. (1993a) Structure of air—water bubbly flow in a vertical pipe-I. Liquid mean velocity and turbulence measurements, Int. J. Heat Mass Transf 36: 1049–1060.CrossRefGoogle Scholar
  74. Liu T J and Bankoff S G 1993b Structure of air—water bubbly flow in a vertical pipe-II. Void fraction, bubble velocity and bubble size distribution Int. J. Heat Mass Transf 36 1061–1072CrossRefGoogle Scholar
  75. Lowe, D., Rezkallah, K.S. (1999), A capacitance sensor for the characterization of microgravity two-phase liquid-gas flow, Meas. Sci. Technol. 10: 965–975.CrossRefGoogle Scholar
  76. Ma, Y, Chung, N., Pei, B., Lin, W. (1991), Two Simplified Methods to Determine Void Fractions for Two-Phase Flow, Nucl. Technology 94: 124–133.Google Scholar
  77. Masuda, Y., Nishikawa, M., Ichijo, B. (1980), New methods of measuring capacitance and resistance of very high loss materials at high frequancies, IEEE Trans. Instrum. Meas. 29: 28–36.CrossRefGoogle Scholar
  78. Maxwell J.C. (1882), A Treatise on Electricity and Magnetism, Oxford: Clarendon Press.Google Scholar
  79. Melnikov, V.I., Kontelev, V.V. (1999), Two-phase flow diagnostic acoustic system based on ultrasound waveguides, in: Two-Phase Flow Modelling and Experimentation 1999 (ed. Celata, G.P., Di Marco, P., Shah, K. ): 1515–1519, Pisa: Edizioni ETS.Google Scholar
  80. Melnikov, V.I., Nigmatulin, B.I. (1994), The newest two-phase control devices in LWR equipment based on ultrasonic and WAT technology, Nucl. Eng. Des. 149: 349–355.CrossRefGoogle Scholar
  81. Menlo M., Dechene, R.L., Cicowlas, W.M. (1977), Void fraction measurement with a rotating electric field conductance gauge, J. Heat Transfer Trans. ASME 99: 330–331.CrossRefGoogle Scholar
  82. Mersereau, R.M. (1976), Direct Fourier transform techniques in 3-D image reconstruction, Comput. Biol. Med. 6: 247–258.CrossRefGoogle Scholar
  83. Mewes, D., Schmitz, D. (1999), Tomographic methods for the analysis of flow patterns in steady and transient flows, in: Two-Phase Flow Modelling and Experimentation 1999 (ed. Celata, G.P., Di Marco, P., Shah, K. ): 29–42, Pisa: Edizioni ETS.Google Scholar
  84. Mishima, K., Hibiki, T. (1996), Quantitative Method to Measure Void Fraction of Two-Phase Flow Using Electronic Imaging with Neutrons, Nucl. Sci. Eng. 124: 327–338.Google Scholar
  85. Natterer, F. (1986), The mathematics of computerized tomography, Stuttgart: Teubner Verlag.MATHGoogle Scholar
  86. Neal, L.G., Bankoff, S.G. (1963), A high resolution resistivity probe for determination of local void properties in gas-liquid flow, AIChE J. 9: 490–494.CrossRefGoogle Scholar
  87. Nogueira S., Dias, I., Pinto, A.M.F.R., Riethmuller, M.L. (2001), Liquid PIV measurements around a single gas slug rising through stagnant liquid in vertical pipes, Proc. 4 th Int. Conf. On Multiphase Flow, New Orleans.Google Scholar
  88. Okamoto, K., Schmidl, W., Hassan, Y. (1995), New tracking algorithm for particle image velocimetry, Exp. Fluids 19: 342–347.CrossRefGoogle Scholar
  89. Parker, D.S., Hawkesworth, M.R., Broadbent, C.J., Fowles, P., Fryer, T.D., McNeal, P.A. (1994), Industrial positron-based imaging: principles and applications, Nucl Instr. Meth. A349: 583–592.Google Scholar
  90. Philip, O.G., Schmidl, W.D., Hassan, Y.A. (1994), Developments of a high speed particle image velocimetry technique using fluorescent tracers to study steam bubbles collapse. Nucl. Eng. Des., 149: 375385.Google Scholar
  91. Ramos, R.T., Holmes, A., Wu, X., Dussan, E. (2001), A local optical probe using fluorescence and reflectance for measurement of volume fractions in multi-phase flows, Meas. Sci. Technol. 12: 871–876.Google Scholar
  92. Reinecke, N., Boddem, M., Petritsch, P., Mewes, D. (1998), Tomographic imaging of the phase distribution in two-phase slug flow, Int. J. Multiphase Flow 24(4): 617–634.Google Scholar
  93. Resch, F.J., Leuthesser, Leutheusser, J.H. (1972), Le ressaut hydraulique: mesures de turbulence dans la region diphasique, Houille Blanche 4: 279–293.Google Scholar
  94. Rowland, S.W. (1979), Computer implementation of image reconstruction formulas, in: Image Reconstruction from Projections Implementation and Applications (ed. Herman, G.T. ): 9–80, Berlin: Springer-Verlag.CrossRefGoogle Scholar
  95. Ruder, Z., Hanratty, T.J. (1990), A Definition of Gas-Liquid Plug Flow in Horizontal Pipes, Int. J. Multiphase Flow 16: 233–242.CrossRefMATHGoogle Scholar
  96. Schlaberg, H.I., Yang, M., Hoyle, B.S. (1996), Real time ultrasonic process tomography for two-component flows, Electronic Letters 32(17): 1571–1572.Google Scholar
  97. Scott D.M., Williams R.A. (eds) (1995), Frontiers in Industrial Process Tomography, New York: Engineering Foundation.Google Scholar
  98. Sene, K.J. (1984), Aspects of bubbly two-phase flow, PhD thesis, Trinity College, Cambridge, U.K.Google Scholar
  99. Serizawa, A., Kataoka, I., Michiyoshi, 1. (1975), Turbulence structure of air-bubbly flow II. Local properties Int. J. Multiphase. Flow 2: 235–246.Google Scholar
  100. Stitou, A., Riethmuller, M.L. (2001), Extension of PIV to super resolution using PTV, Meas. Sci. Technol. 12: 1398–1403.CrossRefGoogle Scholar
  101. Thorn, R., Johansen, G.A., Hammer, E.A. (1999), Three-phase flow measurement in the offshore oil industry - is there a place for process tomography? Proc. 1st World Congress on Industrial Process Tomography Buxton (UK) pp 228–235.Google Scholar
  102. Tsochatzidis, N.A., Karapantios, T.D., Kostoglou, M.V., Karabelas, A.J. (1992), A Conductance Method for Measuring Liquid Fraction in Pipes and Packed Beds, Int. J. Multiphase Flow 5: 653–667.CrossRefGoogle Scholar
  103. Westerweel, J. (1997), Fundamentals of digital particle image velocimetry, Meas. Sci. Technol. 8: 1379–1392.CrossRefGoogle Scholar
  104. Willert, C.E., Gharib, M. (1991), Digital Particle Image Velocimetry, Exp. Fluids 10(4): 181–193.Google Scholar
  105. Wu, X., Fordham, E J, Mullins, O.C., Ramos, R.T. (2000), Single point optical probe for measuring three-phase characteristics of fluid flow in a hydrocarbon well, USA Patent 6 023 340.Google Scholar
  106. Xie, C.G., Reinecke, N., Beck, M.S., Mewes, D., Williams, R.A. (1995), Electrical tomographic techniques for process engineering applications, Chem. Eng. J. 56: 127–133.Google Scholar
  107. Yang W.Q. (1996), Hardware design of electrical capacitance tomography systems Meas. Sci. Technol. 7: 225–232.CrossRefGoogle Scholar
  108. Zuber, N. Findlay, J.A. (1965), Average volume concentration in two-phase flow systems, Journal of Heat Transfer (Transactions ASME)C: 453–468.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Volfango Bertola
    • 1
  1. 1.Laboratoire de Physique StatistiqueEcole Normale SupérieureParisFrance

Personalised recommendations