Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 450))

Abstract

In these notes the most common measurement techniques for two-phase flows are reviewed. The working principles and the configurations of instruments for void fraction measurements, flow visualization and velocity measurements are presented; in detail: radiation attenuation, optical and electrical impedance techniques for void fraction measurement; tomographic and time-average visualization techniques; velocity measurements from signal cross-correlation, hot film anemometry, particle image velocimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuaf, N., Jones, O.C., Zimmer, G.A. (1978), Optical probe for local void fraction and interface velocity measurements, Rev. Sci. Instrum. 49: 1090–1094.

    Article  Google Scholar 

  • Adrian, R.J. (1991), Particle-Imaging Techniques for Experimental Fluid Mechanics, Annu. Rev. Fluid Mech. 22: 261–304.

    Article  Google Scholar 

  • Adrian, R.J. (1996), Laser Velocimetry. In: R.J. Goldstein (Ed.), Fluid Mechanic Measurements, New York: Taylor&Francis.

    Google Scholar 

  • Albouelwafa, M.S.A., Kendall, E.J.M. (1979), Analysis and design of helical capacitance sensors for volume fraction determination, Rev. Sci. Instrum. 50: 872–878.

    Article  Google Scholar 

  • Al-Deen, M.F.N., Samways A.L., Bruun, H.H. (1996), Water flow studies using split-film anemometry Meas. Sci. Technol. 7: 1529–1535.

    Article  Google Scholar 

  • Andreussi, P., Di Donfrancesco, A., and Messia, M. (1988), An Impedance Method for the Measurement of Liquid Hold-Up in Two Phase Flow, Int. J. Multiphase Flow, 14: 777–785.

    Article  Google Scholar 

  • Asali, J.C., Hanratty, T.J. and Andreussi, P. (1985), Interfacial Drag and Film Height for Vertical Annular Flow, AIChE J 31: 895–902.

    Article  Google Scholar 

  • Beck M.S., Williams R.A. (1996), Process tomography; a European innovation and its applications, Meas. Sci. Technol. 7: 215–224.

    Article  Google Scholar 

  • Bendat J.S., Piersol A.G. (1971), Random Data: Analysis and Measurement Procedures, New York: Wiley.

    MATH  Google Scholar 

  • Bertola, V. (2002a), Optical Probe Visualization of Air-Water Flow Structure through a Sudden Area Contraction, Exp. Fluids 32(4): 481–486.

    Google Scholar 

  • Bertola, V. (2002b), Slug Velocity Profiles in Horizontal Gas-Liquid Flow, Exp. Fluids 32(6): 722–727.

    Google Scholar 

  • Bonn, D., Ross, D. (2001), Wetting transitions, Rep. Prog. Phys. 64: 1085–1163.

    Article  Google Scholar 

  • Brown, R.C., Andreussi, P. and Zanelli, S. (1978), The Use of Wire Probes for the Measurement of Liquid Thickness in Annular Gas-Liquid Flows, Can. J. Chem. Eng. 56: 754–757.

    Article  Google Scholar 

  • Bruggeman, D.A.G. (1935), Calculation of Different Physical Constants of Heterogeneous Substances, Ann. Phys. 24: 636–679.

    Article  Google Scholar 

  • Bruun, H.H. (1995), Hot-wire Anemometry, Oxford: Oxford University Press.

    Google Scholar 

  • Bruun H H, Samways A L and Ali J (1995), A hot-film study of oil/water flow in vertical pipes. Proc. 2nd Int. Conf. on Multiphase Flow (Kyoto, Japan, 3–7 April) paper P1, pp 61–67.

    Google Scholar 

  • Cartellier, A. (1990), Optical probes for local void fraction measurements: characterization of performance, Rev. Sci. Instrum. 61: 874–886

    Article  Google Scholar 

  • Cartellier, A. (1992) Simultaneous void fraction measurement, bubble velocity and size estimate using a single optical probe in gas—liquid two-phase flows, Rev. Sci. Instrum. 63: 5442–5453

    Article  Google Scholar 

  • Cartellier, A., Achard, J.L. (1991), Local phase detection probes in fluid/fluid two-phase flows, Rev. Sci. Instrum. 62: 279–303.

    Article  Google Scholar 

  • Cartellier, A., Barrau, E. (1998a), Monofiber optical probes for gas detection and gas velocity measurements: Conical probes, Int. J. Multiphase Flow 24(8): 1265–1294.

    Google Scholar 

  • Cartellier, A., Barrau, E. (1998b), Monofiber optical probes for gas detection and gas velocity measurements: Optimised sensing tips, Int. J. Multiphase Flow 24(8): 1295–1315.

    Google Scholar 

  • Ceccio, S.L., George, D.L. (1996), A Review of Electrical Impedance Techniques for the Measurement of Multiphase Flow, ASMEJ. Fluid Eng. 118: 391–399.

    Article  Google Scholar 

  • Censor, Y. (1983), Finite series-expansion reconstruction methods, Proc. IEEE 71(3): 409–419.

    Google Scholar 

  • Chanson, H. (2002), Air-Water Flow Measurements with Intrusive, Phase-Detection Probes: Can We Improve Their Interpretation? J. Hydr. Eng. 128: 252–255.

    Article  Google Scholar 

  • Chaucki, J. Laracki, F., Dudukovic, M.P. (1997), Noninvasive tomographic and velocimetric monitoring of multiphase flows, Ind. Eng. Chem. Res. 36: 4476–4503.

    Article  Google Scholar 

  • Chigier, N. (1983), Drop size and velocity instrumentation, Prog. Energy Combustion Sci. 9: 155–177.

    Article  Google Scholar 

  • Chigier, N. (1991), Optical imaging of sprays, Prog. Energy Combustion Sci. 17: 211–262.

    Article  Google Scholar 

  • Coney, M.W.E. (1973), The Theory and Application of Conductance Probes for the Measurement of Liquid Film Thickness in Two Phase Flow, J. Phys. E: Scient. Instrum. 6: 903–910.

    Article  Google Scholar 

  • Costigan, G., Whalley, P.B. (1997), Slug Flow Regime Identification from Dynamic Void Fraction Measurement in Vertical Air-Water Flows, Int. J. Multiphase Flow 23: 263–282.

    Article  MATH  Google Scholar 

  • Cartellier, A., Barrau, E. (1998a), Monofiber optical probes for gas detection and gas velocity measurements: Conical probes, Int. J. Multiphase Flow 24(8): 1265–1294.

    Google Scholar 

  • Cartellier, A., Barrau, E. (1998b), Monofiber optical probes for gas detection and gas velocity measurements: Optimised sensing tips, Int. J. Multiphase Flow 24(8): 1295–1315.

    Google Scholar 

  • Cenedese, A., Romano, G.P., Paglialunga, A., Terlizzi, M. (1992), Neural net for trajectories recognition in a flow, Sixth Mt. Symp. on Applications of Laser Techniques to Fluid Mechanics (Lisbon) pp 27.1.127. 1. 6.

    Google Scholar 

  • Delhaye, J.M. (1969), Hot-film anemometry, in: Le Tourneau, B.W., Bergles, A.E. (Eds.), Two-Phase Flow Instrumentation, New York: ASME International.

    Google Scholar 

  • Devia, F., Fossa, M. (2003), Design and optimisation of impedance probes for void fraction measurements, Flow Measurement and Instrumentation 14(4–5): 139–149.

    Google Scholar 

  • Dias, I., Riethmuller, M.L. (1998), PIV in two-phase flows: Simultaneous bubble sizing and liquid velocity measurements, Proc. 9th Symposium on Laser techniques to fluid mechanics, New York: Springer-Verlag.

    Google Scholar 

  • Durst, F., Melling, A., Whitelaw, J.H. (1981), Principles and practice of Laser Doppler Anemometry (211d ed.), New York: Academic Press.

    Google Scholar 

  • Elkow, K.J., Rezkallah, K.S. (1996), Void fraction measurements in gas-liquid flows using capacitance sensors, Meas. Sci. Technol. 7: 1153–1163.

    Article  Google Scholar 

  • Elkow, K.J., Rezkallah, K.S. (1997), Void fraction measurements in gas-liquid flows under 1-g and µ-g conditions using capacitance sensors, Int. J. Multiphase Flow 23: 815–829.

    Article  MATH  Google Scholar 

  • Farrar, B., Bruun, H.H. (1989), Interaction effects between a cylindrical hot-film anemometer probe and bubbles in air/water and oil/water flow, J. Phys. E: Sci. Instrum. 22: 114–123.

    Article  Google Scholar 

  • Farrar B., Samways A.L., Ali J., Bruun, H.H. (1995), A computer based hot-film technique for two-phase flow measurements, Meas. Sci. Technol. 6: 1528–1537.

    Article  Google Scholar 

  • Fordham, E.J., Holmes, A., Ramos, R.T., Simonian, S., Huang, S.-M., Lein, C.P. (1999a), Multi-phasefluid discrimination with local fibre-optical probes: I. Liquid/liquid flows, Meas. Sci. Technol. 10: 1329–1337.

    Article  Google Scholar 

  • Fordham, E.J., Simonian, S., Ramos, R.T., Holmes, A., Huang, S.-M., Lenn, C.P. (1999b), Multi-phasefluid discrimination with local fibre-optical probes: II. Gas/liquid flows, Meas. Sci. Technol. 10: 13381346.

    Google Scholar 

  • Fossa, M. (1998), Design and Performance of a Conductance Probe for Measuring the Liquid Fraction in Two-Phase Gas-Liquid Flows, J. Flow Meas. Instrum. 9: 103–109.

    Article  Google Scholar 

  • Fossa, M., Devia, F. (1999), Theoretical Performance of Impedance Probes for Void Fraction Measurements, Proc. XX International Congress of Refrigeration, Sydney, Australia.

    Google Scholar 

  • Galaup, J.P., Delhaye, J.M. (1976), Utilisation des sondes optiques miniatures en écoulement diphasique gaz-liquide, application à la mesure du taux de présence local et de vitesse local de la phase gazeuse, La Houille Blanche 1: 17–30.

    Article  Google Scholar 

  • George, D.L., Ceccio, S.L., O’Hern, T.J., Skollenberg, K.A., Torczynski, J.R. (1998), Advanced material distribution measurement in multiphase flows: a case study, Proc. ASME-FED 247: 31–42.

    Google Scholar 

  • Geraets, J.J.M., Borst, J.C. (1988), A capacitance sensor for two-phase void fraction measurement and flow pattern identification, Int. J. Multiphase Flow 14: 305–320.

    Article  Google Scholar 

  • Gladden, L.F. (1995), Industrial applications of NMR imaging, Eng. J. 56: 149–158.

    Google Scholar 

  • Gregory, G.A., Mattar, L. (1973), An in-situ volume fraction sensor for two-phase flow of non-electrolytes, J. Canad. Petrol. 12–13: 48–52.

    Google Scholar 

  • Guenther, R. (1990), Modern Optics, New York: Wiley.

    Google Scholar 

  • Hamad, F.A., Imberton, F., Bruun, H.H. (1997), An optical probe for measurements in liquid—liquid two-phase flow, Meas. Sci. Technol. 8: 1122–1132.

    Article  Google Scholar 

  • Hamad, F.A., Bruun, H.H. (2000), Evaluation of bubble/drop velocity and slip velocity by a single normal hot-film probe placed in a two-phase flow, Meas. Sci. Technol. 11: 11–19.

    Article  Google Scholar 

  • Hassan, Y.A., Blanchat, T.K., Seeley, C.H. Jr. (1992), PIV flow visualization using particle tracking techniques, Meas. Sci. Technol. 3: 633–642.

    Article  Google Scholar 

  • Hassan, Y.A., Philip, O.G. (1997), A new artificial neural network tracking technique for particle image velocimetry, Exp. Fluids 23: 145–154.

    Article  Google Scholar 

  • Heerens W.C. (1986), Application of capacitance techniques in sensor design, J. Phys. E: Sci. Instrum 19: 897–906.

    Article  Google Scholar 

  • Heitor M.V., Starner, S.H., Taylor, A.M.K.P., Whitelaw, J.H. (1993), Velocity, Size, and Turbulent Flux measurements by Laser Doppler Velocimetry. In: A.M.K.P. Taylor (Ed.), Instrumentation for flows with combustion, New York: Academic Press.

    Google Scholar 

  • Herman, G.T. (1980), Image reconstruction from projections - the fundamentals of computerized tomography, New York: Academic Press.

    MATH  Google Scholar 

  • Hewitt, G.F. (1978), Measurements of Two-Phase Flow Parameters, New York: Academic Press.

    Google Scholar 

  • Hibiki, T., Mishima, K., Matsubayashi, M. (1995), Application of High-Frame-Rate Neutron Radiography with a Steady Thermal Neutron Beam to Two-Phase Flow Measurements in a Metallic Rectangular Duct, Nuclear Technology 110: 422–435.

    Google Scholar 

  • Hilgers, S., Merzkirch, W., Wagner, T. (1995), PIV measurements in multiphase flow using CCD- and photo-camera flow visualization and image processing of multiphase flow systems, Proc. 1995 ASME/JSME Fluids Engineering and Laser Anenometry Conf. Exh. FED 209: 151–154.

    Google Scholar 

  • Hinata, S. (1972), A study on the measurement of the local void fraction by the optical fibre glass probe, Bull. JSME 15 (88): 1228–1235.

    Article  Google Scholar 

  • Huang, S.M., Stott, A.L., Green, R.G., Beck, M.S. (1988), Electronic transducers for industrial measurement of low value capacitances, J. Phys. E. Sci. Instrum. 21: 242–250.

    Article  Google Scholar 

  • Jones, O.C., Delhaye, J.M. (1976), Transient and Statistical Measurement Techniques for Two-Phase Flows: a Critical Review. Int. J. Multiphase Flow 3: 89–116.

    Article  Google Scholar 

  • Kak, A.C., Slaney, M. (1988), Principles of computerized tomography imaging, New York: IEEE Press. Kang, H.C. Kim, M.H. (1992), The Development of a Flush Wire Probes and Calibration Method for Measuring Liquid Film Thickness, Int. J. Multiphase Flow 18: 423–437.

    Google Scholar 

  • Karapantios, T.D., Paras, S.V., Karabelas, A.J. (1989), Statistical Characteristics of Free Falling Films at High Reynolds Numbers, Int. J. Multiphase Flow 15: 1–21.

    Article  Google Scholar 

  • Kataoka, I., Ishii, M., Serizawa, A. (1986), Local formulation and measurements of interfacial area concentration in two-phase flow, Int. J. Multiphase Flow 12 (4): 505–529.

    Article  MATH  Google Scholar 

  • Keane R.D., Adrian R. J. (1990) Meas. Sci. Technol. 1 1202.

    Google Scholar 

  • Kim, S., Fu, X.Y., Wang, X., Ishii, M. (2000), Development of the miniaturized four-sensor conductivity probe and the signal processing scheme, Int. J. Heat Mass Transfer 43: 4101–4118

    Article  MATH  Google Scholar 

  • Koskie, J.E., Mudawar, I., Tiederman, W.G. (1989), Parallel Wire Probes for Measurements of Thick Liquid Films, Int. J. Multiphase Flow 15: 521–530.

    Article  Google Scholar 

  • Krane, K.S. (1988), Introductory Nuclear Physics. New York: Wiley.

    Google Scholar 

  • Kureta, M., Hibiki, T., Mishima, K., Akimoto, H. (1999), Visualization and void fraction measurement of subcooled boiling water flow in a narrow rectangular channel using high-rate neutron radiography, in: Two-Phase Flow Modelling and Experimentation 1999 (ed. Celata, G.P., Di Marco, P., Shah, K. ): 1509–1514, Pisa: Edizioni ETS.

    Google Scholar 

  • Le Gall, F., Pascal-Ribot, S., Leblond, J. (2001), Nuclear magnetic resonance measurements of fluctuations in air—water two-phase flow: Pipe flow with and without “disturbing” section, Phys. Fluids 13(5): 1118–1129.

    Google Scholar 

  • Liu T.J., Bankoff S.G. (1993a) Structure of air—water bubbly flow in a vertical pipe-I. Liquid mean velocity and turbulence measurements, Int. J. Heat Mass Transf 36: 1049–1060.

    Article  Google Scholar 

  • Liu T J and Bankoff S G 1993b Structure of air—water bubbly flow in a vertical pipe-II. Void fraction, bubble velocity and bubble size distribution Int. J. Heat Mass Transf 36 1061–1072

    Article  Google Scholar 

  • Lowe, D., Rezkallah, K.S. (1999), A capacitance sensor for the characterization of microgravity two-phase liquid-gas flow, Meas. Sci. Technol. 10: 965–975.

    Article  Google Scholar 

  • Ma, Y, Chung, N., Pei, B., Lin, W. (1991), Two Simplified Methods to Determine Void Fractions for Two-Phase Flow, Nucl. Technology 94: 124–133.

    Google Scholar 

  • Masuda, Y., Nishikawa, M., Ichijo, B. (1980), New methods of measuring capacitance and resistance of very high loss materials at high frequancies, IEEE Trans. Instrum. Meas. 29: 28–36.

    Article  Google Scholar 

  • Maxwell J.C. (1882), A Treatise on Electricity and Magnetism, Oxford: Clarendon Press.

    Google Scholar 

  • Melnikov, V.I., Kontelev, V.V. (1999), Two-phase flow diagnostic acoustic system based on ultrasound waveguides, in: Two-Phase Flow Modelling and Experimentation 1999 (ed. Celata, G.P., Di Marco, P., Shah, K. ): 1515–1519, Pisa: Edizioni ETS.

    Google Scholar 

  • Melnikov, V.I., Nigmatulin, B.I. (1994), The newest two-phase control devices in LWR equipment based on ultrasonic and WAT technology, Nucl. Eng. Des. 149: 349–355.

    Article  Google Scholar 

  • Menlo M., Dechene, R.L., Cicowlas, W.M. (1977), Void fraction measurement with a rotating electric field conductance gauge, J. Heat Transfer Trans. ASME 99: 330–331.

    Article  Google Scholar 

  • Mersereau, R.M. (1976), Direct Fourier transform techniques in 3-D image reconstruction, Comput. Biol. Med. 6: 247–258.

    Article  Google Scholar 

  • Mewes, D., Schmitz, D. (1999), Tomographic methods for the analysis of flow patterns in steady and transient flows, in: Two-Phase Flow Modelling and Experimentation 1999 (ed. Celata, G.P., Di Marco, P., Shah, K. ): 29–42, Pisa: Edizioni ETS.

    Google Scholar 

  • Mishima, K., Hibiki, T. (1996), Quantitative Method to Measure Void Fraction of Two-Phase Flow Using Electronic Imaging with Neutrons, Nucl. Sci. Eng. 124: 327–338.

    Google Scholar 

  • Natterer, F. (1986), The mathematics of computerized tomography, Stuttgart: Teubner Verlag.

    MATH  Google Scholar 

  • Neal, L.G., Bankoff, S.G. (1963), A high resolution resistivity probe for determination of local void properties in gas-liquid flow, AIChE J. 9: 490–494.

    Article  Google Scholar 

  • Nogueira S., Dias, I., Pinto, A.M.F.R., Riethmuller, M.L. (2001), Liquid PIV measurements around a single gas slug rising through stagnant liquid in vertical pipes, Proc. 4 th Int. Conf. On Multiphase Flow, New Orleans.

    Google Scholar 

  • Okamoto, K., Schmidl, W., Hassan, Y. (1995), New tracking algorithm for particle image velocimetry, Exp. Fluids 19: 342–347.

    Article  Google Scholar 

  • Parker, D.S., Hawkesworth, M.R., Broadbent, C.J., Fowles, P., Fryer, T.D., McNeal, P.A. (1994), Industrial positron-based imaging: principles and applications, Nucl Instr. Meth. A349: 583–592.

    Google Scholar 

  • Philip, O.G., Schmidl, W.D., Hassan, Y.A. (1994), Developments of a high speed particle image velocimetry technique using fluorescent tracers to study steam bubbles collapse. Nucl. Eng. Des., 149: 375385.

    Google Scholar 

  • Ramos, R.T., Holmes, A., Wu, X., Dussan, E. (2001), A local optical probe using fluorescence and reflectance for measurement of volume fractions in multi-phase flows, Meas. Sci. Technol. 12: 871–876.

    Google Scholar 

  • Reinecke, N., Boddem, M., Petritsch, P., Mewes, D. (1998), Tomographic imaging of the phase distribution in two-phase slug flow, Int. J. Multiphase Flow 24(4): 617–634.

    Google Scholar 

  • Resch, F.J., Leuthesser, Leutheusser, J.H. (1972), Le ressaut hydraulique: mesures de turbulence dans la region diphasique, Houille Blanche 4: 279–293.

    Google Scholar 

  • Rowland, S.W. (1979), Computer implementation of image reconstruction formulas, in: Image Reconstruction from Projections Implementation and Applications (ed. Herman, G.T. ): 9–80, Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Ruder, Z., Hanratty, T.J. (1990), A Definition of Gas-Liquid Plug Flow in Horizontal Pipes, Int. J. Multiphase Flow 16: 233–242.

    Article  MATH  Google Scholar 

  • Schlaberg, H.I., Yang, M., Hoyle, B.S. (1996), Real time ultrasonic process tomography for two-component flows, Electronic Letters 32(17): 1571–1572.

    Google Scholar 

  • Scott D.M., Williams R.A. (eds) (1995), Frontiers in Industrial Process Tomography, New York: Engineering Foundation.

    Google Scholar 

  • Sene, K.J. (1984), Aspects of bubbly two-phase flow, PhD thesis, Trinity College, Cambridge, U.K.

    Google Scholar 

  • Serizawa, A., Kataoka, I., Michiyoshi, 1. (1975), Turbulence structure of air-bubbly flow II. Local properties Int. J. Multiphase. Flow 2: 235–246.

    Google Scholar 

  • Stitou, A., Riethmuller, M.L. (2001), Extension of PIV to super resolution using PTV, Meas. Sci. Technol. 12: 1398–1403.

    Article  Google Scholar 

  • Thorn, R., Johansen, G.A., Hammer, E.A. (1999), Three-phase flow measurement in the offshore oil industry - is there a place for process tomography? Proc. 1st World Congress on Industrial Process Tomography Buxton (UK) pp 228–235.

    Google Scholar 

  • Tsochatzidis, N.A., Karapantios, T.D., Kostoglou, M.V., Karabelas, A.J. (1992), A Conductance Method for Measuring Liquid Fraction in Pipes and Packed Beds, Int. J. Multiphase Flow 5: 653–667.

    Article  Google Scholar 

  • Westerweel, J. (1997), Fundamentals of digital particle image velocimetry, Meas. Sci. Technol. 8: 1379–1392.

    Article  Google Scholar 

  • Willert, C.E., Gharib, M. (1991), Digital Particle Image Velocimetry, Exp. Fluids 10(4): 181–193.

    Google Scholar 

  • Wu, X., Fordham, E J, Mullins, O.C., Ramos, R.T. (2000), Single point optical probe for measuring three-phase characteristics of fluid flow in a hydrocarbon well, USA Patent 6 023 340.

    Google Scholar 

  • Xie, C.G., Reinecke, N., Beck, M.S., Mewes, D., Williams, R.A. (1995), Electrical tomographic techniques for process engineering applications, Chem. Eng. J. 56: 127–133.

    Google Scholar 

  • Yang W.Q. (1996), Hardware design of electrical capacitance tomography systems Meas. Sci. Technol. 7: 225–232.

    Article  Google Scholar 

  • Zuber, N. Findlay, J.A. (1965), Average volume concentration in two-phase flow systems, Journal of Heat Transfer (Transactions ASME)C: 453–468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Bertola, V. (2003). Two-Phase Flow Measurement Techniques. In: Bertola, V. (eds) Modelling and Experimentation in Two-Phase Flow. International Centre for Mechanical Sciences, vol 450. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2538-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2538-0_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-20757-4

  • Online ISBN: 978-3-7091-2538-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics