This chapter describes gas-liquid slug flow (also known as intermittent flow). Conservation equations are derived based on the assumptions of the unit cell model. The main results concerning the motion of long bubbles and liquid slugs are reviewed.


Vertical Flow Hydraulic Jump Slug Flow Horizontal Flow Stratify Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreussi, P., Bendiksen, K. (1989). An investigation of void fraction in liquid slugs for horizontal and inclined gas-liquid pipe flow. Int. J. Multiphase Flow 15, 937–946.CrossRefGoogle Scholar
  2. Barnea, D., Shemer, L. (1989). Void fraction measurements in vertical slug flow: applications to slug characteristics and transition. Int. J. Multiphase Flow 15, 495–504.CrossRefGoogle Scholar
  3. Bendiksen, K. H. (1984). An experimental investigation of the motion of the long bubbles in inclined tubes. Int. J Multiphase Flow 10, 467–83.CrossRefGoogle Scholar
  4. Benjamin, T. B. (1968). Gravity currents and related phenomena. J. Fluid Mech. 31, 209–48.CrossRefMATHGoogle Scholar
  5. Collins, R., de Moraes, F. F., Davidson, J. F., Harrison, D. (1978). The motion of large bubbles rising through liquid flowing in a tube. J. Fluid Mech. 89, 497–514.CrossRefGoogle Scholar
  6. Delfos, R., Wisse, C.J. Oliemans, R.V.A. (2001) Measurement of air entrainment from a stationary Taylor bubble in a vertical tube. Int. J. Multiphase Flow. 27, p. 1769–1787.CrossRefMATHGoogle Scholar
  7. Dukler, A.E. and J. Fabre, (1994) Chapter 7: Gas liquid slug flow: knots and loose ends, in Multiphase science and technology. Two Phase flow fundamentals, G.F. Hewitt, J.H. Kim, R.T. Lahey, J.M. Delhaye, and N. Zuber, Editors, Begell House: Wallinford, UK. pp. 355–470.Google Scholar
  8. Dumitrescu, D. T. (1943). Strömung an einer Luftblase im senkrechten Rohr, Z. Angew. Math. Mech. 23, 139–49.CrossRefMathSciNetGoogle Scholar
  9. Fabre, J., Grenier, P., Gadoin, E. (1993). Evolution of slug flow in long pipe, 6th International Conference on Multi-Phase Production, Cannes, France, June 1993,in Multi Phase Production, Ed. A. Wilson, pp. 165–177, MEP, London.Google Scholar
  10. Fabre, J., Lind, A. (1992). Modelling of two phase slug flow. Annu. Rev. Fluid Mech. 24, 21–46.CrossRefGoogle Scholar
  11. Fagundes Netto, J.R., J. Fabre, and L. Péresson (1999) Shape of long bubbles in horizontal slug flow. Int. J. Multiphase Flow. 25 (6–7): p. 1129–1160.CrossRefMATHGoogle Scholar
  12. Fagundes Netto, J.R., J. Fabre, and L. Péresson (submitted), Behaviour of long bubbles in horizontal tubes: transient motion and overtaking mechanism. Int. J. Multiphase Flow. Google Scholar
  13. Ferschneider, G. (1982). Ecoulements gaz-liquide à poches et à bouchons en conduite. Rev. Inst. Fr. Pét. 38, 153–82.Google Scholar
  14. Fréchou, D. (1986). Etude de l’écoulement ascendant à trois fluides en conduite verticale. Thèse, Inst. Natl. Polytech. de Toulouse, France.Google Scholar
  15. Gregory, G. A., Scott, D. S. (1969). Correlation of liquid slug velocity and frequency in horizontal cocurrent gas-liquid slug flow. AIChE J. 15, 833–35.CrossRefGoogle Scholar
  16. Griffith, P., Wallis, G. B. (1961). Two-phase slug flow. J. Heat Transfer. 83, 307–20.CrossRefGoogle Scholar
  17. Harmathy, T. Z. (1960). Velocity of large drops and bubbles in media of infinite or restricted extent, AIChE J. 6, 281–88.CrossRefGoogle Scholar
  18. Hinze, J. O. (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1, 289–95.CrossRefGoogle Scholar
  19. Hubbard, M.G. (1965). An analysis of horizontal gas-liquid slug flow, Ph.D. Thesis, University of Houston.Google Scholar
  20. Kowe R., Hunt J.C.R., Hunt A., Couet B., Bradbury L.J.S. (1988) Int. J. Mult. Flow. 14, 587–606.CrossRefGoogle Scholar
  21. Linga, H. (1991). Flow pattern evolution; some experimental results obtained at the SINTEF Multiphase Flow Laboratory, 5th International Conference on Multi Phase Production, Cannes, France, June 1991, in Multi Phase Production, Ed. A.P. Burns, pp. 51–67, Elsevier.Google Scholar
  22. Mao Z., Dukler, A. E. (1989). An experimental study of gas-liquid slug flow. Exp. Fluids. 8, 169–82.CrossRefGoogle Scholar
  23. Mao Z., Dukler, A. E. (1991). The motion of Taylor bubbles in vertical tubes. II. Experimental data and simulations for laminar and turbulent flow. Chem. Eng. Sci. 46, 2055–64.CrossRefGoogle Scholar
  24. Martin, C. S. (1976). Vertically downward two-phase slug flow. J. Fluids Eng. 98, 715–22.CrossRefGoogle Scholar
  25. Nicklin, D. J., Wilkes, J. 0., Davidson, J. F. (1962). Two phase flow in vertical tubes. Trans. Inst. Chem. Engs. 40, 61–68.Google Scholar
  26. Spedding, P. L., Nguyen, V. T. (1978). Bubble rise and liquid content in horizontal and inclined tubes. Chem. Eng. Sci. 33, 987–94.CrossRefGoogle Scholar
  27. Taitel, Y., Barnea, D. (1990). Two-phase slug flow. Adv. Heat Transfer. 20, 83–132.CrossRefGoogle Scholar
  28. Tronconi, E. (1990). Prediction of slug frequency in horizontal two-phase slug flow. AIChE Journal 36, 701–709. 156Google Scholar
  29. Wallis, G. B. (1969). One-Dimensional Two-Phase Flow. New-York, McGraw-Hill.Google Scholar
  30. Zukoski, E. E. (1966). Influence of viscosity, surface tension and inclination angle on motion of long bubbles in closed tubes. J. Fluid Mech. 25, 821–37.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Jean Fabre
    • 1
  1. 1.Institut de Mécanique des FluidesToulouseFrance

Personalised recommendations