Modelling of Stratified Gas-Liquid Flow

  • Jean Fabre
Part of the International Centre for Mechanical Sciences book series (CISM, volume 450)


This chapter focuses on the behaviour of stratified gas-liquid flow in horizontal or nearly horizontal pipes. Conservation equations and closure relationships are described for stratified smooth and stratified wavy flows. Details on the local structure, surface waves, wall and interfacial shear stresses are also provided.


Shear Stress Wall Shear Stress Friction Factor Interfacial Shear Stress Stratify Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, J. (1984) Modeling of turbulent flow over a wavy surface, Ph. D. Thesis, Univ. of Illinois, Urbana, U.S.A.Google Scholar
  2. Aggour, M.A. and Sims, G.E. (1978). A theoretical solution of pressure drop and holdup in two-phase stratified flow, Proc. Heat Transfer Fluid Mech. Inst., pp. 205–217.Google Scholar
  3. Agrawal, S.S., Gregory, G.A. et Govier, G.W. (1973). An Analysis of horizontal Stratified Two Phase Flow in Pipes, Can. J. Chem. Eng., 51, 280.Google Scholar
  4. Akai, M., Inoue, A., Aoki, S. (1977). Structure of a co-current stratified two phase flow with wavy interface, Theo. Appl. Mech., vol. 25, pp. 445–456.Google Scholar
  5. Akai, M., Inoue, A., Aoki, S. (1981)., The prediction of stratified two-phase flow with a two-equation model of turbulence, Int. J. Multiphase Flow, vol. 7, pp. 21–39.Google Scholar
  6. Andritsos, N. (1986) Effect of pipe diameter and liquid viscosity on horizontal stratified flow, Ph. D. Thesis, Univ. of Illinois, Urbana, U. S. A.Google Scholar
  7. Andritsos, N. and Hanratty, T.J. (1987) Influence of interfacial waves in stratified gas-liquid flows, AIChE J, 33, p 444–454.CrossRefGoogle Scholar
  8. Andritsos, N. and Hanratty, T.J., (1987). Interfacial instabilities for horizontal gas-liquid flows in pipelines, Int. J. Multiphase Flow, vol. 13, no. 5, pp. 583–603.CrossRefGoogle Scholar
  9. Belcher, S. E. and Hunt, J. C. R. (1993) Turbulent shear flow over slowly moving waves, 1 Fluid Mech, 251, p 109–148.CrossRefMATHMathSciNetGoogle Scholar
  10. Benjamin, T.B. (1959). Shearing flow over a wavy boundary, J. Fluid Mech., 6, 161.CrossRefMATHMathSciNetGoogle Scholar
  11. Bontozoglou, V. and Hanratty, T.J. (1989). Wave height estimation in stratified gas-liquid flows, A.I.Ch.E. Journal, vol. 35, pp. 1346–1350.CrossRefGoogle Scholar
  12. Bruno, K. and McCready, M. J. (1989) Processes which control the interfacial wave-spectrum in separate gas-liquid flows, Int. J. Multiphase Flow, 15, p 531–552.CrossRefGoogle Scholar
  13. Charnock, H. (1955) Wind Stress on a Water Surface, Q. J. Met. Soc., 81, p 639–640.CrossRefGoogle Scholar
  14. Cheremisinoff, N. and Davis, E.J. (1979) Stratified turbulent-turbulent gas-liquid flow, AIChE J, 25, p 4856.CrossRefGoogle Scholar
  15. Chisholm, D., (1967). A theoretical basis for the local Lockhart-Martinelli correlation for two-phase flow, Int. J. Heat and Mass Transfer, vol. 10, P. 1967.CrossRefGoogle Scholar
  16. Cohen, L. S. and Hanratty, T. J. (1965) Generation of waves in the concurrent flow of air and liquid, AIChE J., 11, p138–144.CrossRefGoogle Scholar
  17. Cohen, L. S. and Hanratty, T. J. (1968), Effect of waves at gas-liquid interface on a turbulent air flow, J. Fluid Mech., 31, p 467-.Google Scholar
  18. Crouzier, O., (1978). Ecoulements diphasiques gaz-liquide dans les conduites faiblement inclinées par rapport à l’horizontale, Thèse, Université de Paris V I.Google Scholar
  19. Davis E.J., (1969). Interfacial shear measurement for two-phase gas-liquid flow by means of Preston tubes, Ind Eng. Chem. Fundam., vol 8, pp. 153–159.CrossRefGoogle Scholar
  20. Ellis, S.R., and Gay, B. (1959). The parallel flow of two fluid streams: interfacial shear and fluid-fluid interaction, Trans. Instn. Chem. Engrs., 37, 206.Google Scholar
  21. Fabre, J., Masbernat, L. and Suzanne, C. (1982). New results on the structure of stratified gas-liquid flow, Nato Advanced Research Workshop on two-phase flows and Heat Transfer, Spitzingsee, W. Germany.Google Scholar
  22. Fabre, J., Masbernat, L. and Suzanne, C. (1983). Structure cinématique de l’écoulement interne gaz-liquide à phases séparées et interface ondulée, C.R. Acad. Sc., Paris, 297, 695.Google Scholar
  23. Fabre, J., Masbernat, L. and Suzanne, C. (1985a). Stratified flow, Part I: local structure“, International Workshop on Two-Phase Flow Fundamentals, Gaithesburg, Maryland, USA, September 22–27 1985, also in Multiphase Science and Technology, vol. 3, edited by G.F. Hewitt, J.M. Delhaye and N. Zuber, Hemisphere Publishing Corporation, 1987.Google Scholar
  24. Fabre, J., Masbernat, L., Fernandez-Flores, R., Suzanne, C. (1985b) Stratified flow, Part II: interfacial and wall shear stress, International Workshop on Two-Phase Flow Fundamentals, Gaithesburg, Maryland, USA, September 22–27 1985, also in Multiphase Science and Technology, vol. 3, edited by G.F. Hewitt, J.M. Delhaye and N. Zuber, Hemisphere Publishing Corporation, 1987.Google Scholar
  25. Fernandez-Flores, R. (1984) Etude des interactions dynamiques en écoulement diphasique stratifié, Thèse, INP Toulouse, France.Google Scholar
  26. Hanjalic, K. and Launder, B.E. (1972). Fully developed asymmetric flow in a plane channel, J. Fluid Mech., vol. 51, pp. 301–335.CrossRefGoogle Scholar
  27. Hanratty, T. J. (1983) Interfacial instabilities caused by air flow over a thin liquid layer, Waves on Fluid Interface, Academic Press, Inc., New York.Google Scholar
  28. Hanratty, T.J. (1991) Separated flow modelling and interfacial transport phenomena, Applied Scientific Research, vol. 48, pp. 353–390.CrossRefMATHGoogle Scholar
  29. Hanratty, T. J. and McCready, M. J. (1992) Phenomenological understanding of gas-liquid separated flows, Proc. Third International Workshop on Two-Phase Flow Fundamentals, Imperial College, London, U. K., April 1992.Google Scholar
  30. Hanratty, T.G. and Engen, J.M., (1957). Interactions between a turbulent air stream and a moving water surface, J. Am. Inst. Chem. Eng., 3, 299.CrossRefGoogle Scholar
  31. Harris, J. A. (1993) On the growth of water waves and the motion beneath them, Ph. D. Thesis, Stanford Univ., U.S.A.Google Scholar
  32. Henstock, W.H. and Hanratty, T.J., (1976). The interfacial drag and the height of the wall layer in annular flows, A.I.Ch.E. Journal, 22, 6.CrossRefGoogle Scholar
  33. Hidy, G.M. and Plate, E.J., (1966). Wind action on water standing in a laboratory channel, J. Fluid Mech., 26, 651.CrossRefGoogle Scholar
  34. Hudson, J. D. (1993) The effect of a wavy boundary on a turbulent flow, Ph. D. Thesis, Univ. of Illinois, Urbana, U.S.A.Google Scholar
  35. Jeffreys, H. (1924). On the formation of water waves by wind, Proc. Roy. Soc., A., 107, pp. 189–206.CrossRefGoogle Scholar
  36. Jurman, L. A. and McCready, M. J. (1989) Study of waves on thin liquid films sheared by turbulent gas flow, Phys. Fluids, Al-3, p 522–535Google Scholar
  37. Kordyban, E., (1974). Interfacial shear stress in two-phase wavy flow in closed horizontal channels, J. Fluid Eng., 97.Google Scholar
  38. Kordyban, E., (1977). Some characteristics of high waves in closed channels approaching Kelvin-Helmholtz instability, J. Fluid Eng., 339.Google Scholar
  39. Kowalski, J.E. (1987). Wall and interfacial shear stress in stratified flow in a horizontal pipe, AIChE J., vol. 33, pp. 274–281.CrossRefGoogle Scholar
  40. Liné, A. and Lopez, D. (1995) Two-fluid model of separated two-phase flow: momentum transfer on wavy boundary, Proc. Second International Conference on Multiphase Flow, Kyoto, JapanGoogle Scholar
  41. Lleonart, G.T. and Blackman, D.R., (1980). The spectral characteristics of wind-generated capillary waves, J. Fluid Mech., vol. 97, pp. 455–479.CrossRefGoogle Scholar
  42. Lopez, D. (1994) Ecoulements diphasiques à phases séparées à faible contenu de liquide, Thèse, INP Toulouse, FranceGoogle Scholar
  43. Magnaudet, J. (1989). Interactions interfaciales en écoulement à phases séparées. Thèse, INP Toulouse. Michell, J.H. (1893). The highest waves in water. Phil. Mag., vol. 36, pp. 430–437.Google Scholar
  44. Milne-Thomson, L.M. (1955). Theoretical hydrodynamics, McMillan,. New York.MATHGoogle Scholar
  45. Mouly, (1979). Ecoulements stratifiés de gaz naturel et d’huile en conduite pétrolière, Thèse, Paris VI. Phillips, O.M. (1977). The dynamic of the upper ocean, Cambridge University Press, London.Google Scholar
  46. Preston, J.H., (1954). The determination of turbulent skin friction by means of Pitot tube, J. Roy. Aero.Soc., 58, 109.Google Scholar
  47. Rosant, J.M. (1984) Ecoulements diphasiques liquide-gaz en conduite circulaire, Thèse, ENSM, Nantes, France.Google Scholar
  48. Sinai, Y. L. (1985) Interfacial phenomena of fully-developed, stratified, two-phase flows, Encyclopedia of Fluid Mechanics, Vol 3, Gas-Liquid Flows, p 475–491, N. P. Cheremisinoff, Ed.Google Scholar
  49. Smith, T.N., and Tait, R.W.F., (1966). Interfacial shear stress and momentum transfer in horizontal gasliquid flow, Chem. Eng. Sc., 21, 63.Google Scholar
  50. Strand, O. (1993) An experimental investigation of stratified two-phase flow in horizontal pipes, Ph. D. Thesis, Univ. of Oslo, Norway.Google Scholar
  51. Suzanne, C., (1985). Structure de l’écoulement stratifié de gaz et de liquide en canal rectangulaire. Thèse, INP Toulouse.Google Scholar
  52. Taitel, Y. and Dukler, A. E. (1976) A theoretical approach to the Lockhart-Martinelli correlation for stratified flow, Int. J. Multiphase Flow, 2, p 591–595.CrossRefGoogle Scholar
  53. Taitel, Y. and Dukler, A. E. (1976) Model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE J., 22, p 47–55.CrossRefGoogle Scholar
  54. Thorsness, C.B., Morrisroe, P.E. and Hanratty, T.J. (1978). A comparison of linear theory with measurements of the variation of shear stress along a solid wave. Chem. Engng. Sci., vol. 33, pp. 579–592. Wallis, G.B., (1969). One-dimensional two-phase flow, McGraw-Hill, New York.Google Scholar
  55. Wang, A.K. and Gelhar, L.W. (1974). Turbulent Couette flow, J. Fluid Engng., September, pp. 265–271. Whitham, G.B. (1974). Linear and non-linear waves, Wiley-Interscience.Google Scholar
  56. Wu, J., (1968). Laboratory studies of wind waves interactions, J. Fluid Mech., 34, 91.CrossRefGoogle Scholar
  57. Wu, J., (1975), Wind-induced drift currents, J. Fluid Mech., 68, 49.CrossRefGoogle Scholar
  58. Wu, J., (1980), Wind stress coefficients over sea surface near neutral conditions: a revisit. Journal of Physical Oceanography, 10, 727.CrossRefGoogle Scholar
  59. Yu, H.S. and Sparrow, E.M. (1967). Stratified laminar flow in ducts of arbitrary shape, AIChE J, vol. 13, pp. 10–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Jean Fabre
    • 1
  1. 1.Institut de Mécanique des FluidesToulouseFrance

Personalised recommendations