Problems concerning the elastic constants determination of isotropic and orthotropic plates

  • Ivan Bartoli
  • Erasmo Violai
Part of the International Centre for Mechanical Sciences book series (CISM, volume 471)


In this paper a procedure for estimating the four in-plane elastic constants from measured natural frequencies of a completely free plate is described. The parameter estimation problem is solved by a least square approach. The numerical model for calculating the natural frequencies comprises a Rayleigh-Ritz formulation. The performance of the identification approach is illustrated by numerical simulations. The results of the procedure of identification are also compared with the esteems obtained in several articles for various examples of isotropic and orthotropic plates.


Elastic Constant Experimental Frequency Orthotropic Plate Integral Matrice Numerical Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I. Bartoli. Identificazione dinamica dei parametri di piastre ortotrope. Tesi di laurea (Relatore Prof. E. Viola),Facoltà di Ingegneria, Università di Bologna A.A. 2000/2001.Google Scholar
  2. I. Bartoli, E. Viola. Problemi di stima delle costanti elastiche di piastre isotrope ed ortotrope. Nota Tecnica 57, Anno 2002,D.I.S.T.A.R.T., Facoltà di Ingegneria, Università di Bologna.Google Scholar
  3. G. Caldersmith, T.D. Rossing. Determination of modal coupling in vibrating rectangular plates. Applied Acoustics, 17: 33–44, 1984.CrossRefGoogle Scholar
  4. L.R. Deobald, R.F. Gibson. Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh Ritz technique. Journal of Sound and Vibration, 124 (2): 269–283, 1988.CrossRefGoogle Scholar
  5. R.M. Jones. Mechanics of Composite Materials, Scripta Book Company, Washington D.C., 1975.Google Scholar
  6. P. Laarson, O. Laarson. Determination of Young’s and shear moduli from flexural vibrations of beams. Journal of Sound and Vibration, 146 (1): 111–123, 1991.CrossRefGoogle Scholar
  7. D. Larsson. Using modal analysis for estimation of anisotropic material constants. Journal of Engineering Mechanics, 3 (123): 222–229, 1997.CrossRefGoogle Scholar
  8. T.C. Lai, K.H. Ip. Parameter estimation of orthotropic plates by Bayesian sensitivity analysis. Composite Stuctures, 34: 29–42, 1996.CrossRefGoogle Scholar
  9. T.C. Lai, T.C. Lau. Determination of elastic constants of a generally orthotropic plate by modal analysis. The international Journal of Analitical and Experimental Modal Analysis, 1 (8): 15–33, 1993.Google Scholar
  10. A.W. Leissa. The free vibration of rectangular plates. Journal of Sound and Vibration, 31 (3): 257–293, 1973.CrossRefMATHGoogle Scholar
  11. M.E. McIntyre, J. Woodhouse. On measuring the elastic and damping constants of orthotropic sheet materials. Acta Metallurgica, 6 (36): 1397–1416, 1988.CrossRefGoogle Scholar
  12. M.E. McIntyre, J. Woodhouse. The influence of geometry on linear damping. Acustica, 39 (4): 209–224, 1988.MathSciNetGoogle Scholar
  13. R.D. Mindlin, M.A. Medick. Extensional vibrations of elastic plates. Journal of Applied Mechanics, 26: 561–569, 1959.MathSciNetGoogle Scholar
  14. F. Moussu, M. Nivoit. Determination of elastic constants of orthotropic plates by a modal analysis/method of superposition. Journal of Sound and Vibration, 165 (1): 149–163, 1993.CrossRefMATHGoogle Scholar
  15. J.N. Reddy. Energy and Variational Methods in Applied Mechanics, Wiley Interscience, 1984.Google Scholar
  16. E. Viola. Fondamenti di dinamica e vibrazione delle strutture, Volume II, Pitagora Editrice, 2001.Google Scholar
  17. E. Viola. Scienza delle costruzioni, Volume I, Teoria dell’elasticità, Pitagora Editrice, 2000.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Ivan Bartoli
    • 1
  • Erasmo Violai
    • 1
  1. 1.Faculty of Engineering, DISTART DepartmentUniversity of BolognaItaly

Personalised recommendations