Advertisement

Identification of elastic constants by Bayesian approach

  • Ivan Bartoli
  • Antonio di Leo
  • Erasmo Viola
Part of the International Centre for Mechanical Sciences book series (CISM, volume 471)

Abstract

A combined numerical-experimental procedure for the identification of the elastic material modulus of generally thin orthotropic plates is discussed in this paper. This method makes use of experimental plate response data, corresponding numerical predictions and Bayesian sensitivity analysis. The response data are a set of natural frequencies of flexural vibration of the plate. The numerical model is based on the Rayleigh Ritz method and the finite element method using a classical plate theory displacement field. Statistical Bayesian estimation is applied in an iterative scheme to direct the adjustments of material properties based on the discrepancies between the analytical and experimental responses. The confidence associated with frequencies and mechanical properties is incorporated into the revision procedure. The effects of the confidence associated with experimental and numerical data and parameter estimates are numerically investigated. The validity and efficiency of the present procedure is illustrated through several test cases.

Keywords

Elastic Constant Bayesian Approach Experimental Frequency Orthotropic Plate Sensitivity Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. I. Bartoli. Identificazione dinamica dei parametri di piastre ortotrope. Tesi di laurea (Relatore Prof. E. Viola), Facoltà di Ingegneria, Università di Bologna A.A. 2000/2001.Google Scholar
  2. I. Bartoli, A. di Leo, E. Viola. Identificazione delle costanti elastiche attraverso l’approccio Bayesiano per materiali generalmente ortotropi. Nota Tecnica 83, Anno 2002, D.I.S.T.A.R.T., Facoltà di Ingegneria, Università di Bologna.Google Scholar
  3. G. Caldersmith, T.D. Rossing. Determination of modal coupling in vibrating rectangular plates. Applied Acoustics, 17: 33–44, 1984.CrossRefGoogle Scholar
  4. L.R. Deobald, R.F. Gibson. Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh Ritz technique. Journal of Sound and Vibration, 124 (2): 269–283, 1988.CrossRefGoogle Scholar
  5. R.M. Jones. Mechanics of Composite Materials, Scripta Book Company, Washington D.C., 1975.Google Scholar
  6. P. Laarson, O. Laarson. Determination of Young’s and shear moduli from flexural vibrations of beams Journal of Sound and Vibration, 146 (1): 111–123, 1991.CrossRefGoogle Scholar
  7. D. Larsson. Using modal analysis for estimation of anisotropic material constants. Journal of Engineering Mechanics, 3 (123): 222–229, 1997.CrossRefGoogle Scholar
  8. T.C. Lai, K.H. Ip. Parameter estimation of orthotropic plates by Bayesian sensitivity analysis. Composite Stuctures, 34: 29–42, 1996.CrossRefGoogle Scholar
  9. T.C. Lai, T.C. Lau. Determination of elastic constants of a generally orthotropic plate by modal analysis. The international Journal of Analitical and Experimental Modal Analysis, 1 (8): 15–33, 1993.Google Scholar
  10. M.E. McIntyre, J. Woodhouse. The influence of geometry on linear damping. Acustica, 39 (4): 209–224, 1988.MathSciNetGoogle Scholar
  11. M.E. McIntyre, J. Woodhouse. On measuring the elastic and damping constants of orthotropic sheet materials. Acta Metallurgica, 6 (36): 1397–1416, 1988.CrossRefGoogle Scholar
  12. F. Moussu, M. Nivoit. Determination of elastic constants of orthotropic plates by a modal analysis/method of superposition. Journal of Sound and Vibration, 165 (1): 149–163, 1993.CrossRefMATHGoogle Scholar
  13. J.N. Reddy. Energy and Variational Methods in Applied Mechanics, Wiley Interscience, 1984.Google Scholar
  14. E. Viola. Fondamenti di dinamica e vibrazione delle strutture, Volume II, Pitagora Editrice, 2001.Google Scholar
  15. E. Viola. Scienza delle costruzioni, Volume I, Teoria dell’elasticità, Pitagora Editrice, 2000.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Ivan Bartoli
    • 1
  • Antonio di Leo
    • 1
  • Erasmo Viola
    • 1
  1. 1.Faculty of Engineering, DISTART DepartmentUniversity of BolognaItaly

Personalised recommendations