Skip to main content

Numerical characterization and computation of dynamic instabilities for frictional contact problems

  • Chapter
Friction and Instabilities

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 457))

Abstract

This chapter focuses on the numerical aspects of the characterization of friction-induced instabilities and their dynamic computation for linear and nonlinear problems. We begin by presenting briefly basic formulations and several computational methods for solving unilateral frictional contact problems, in quasi-statics and dynamics, and in elasticity and hyper-elasticity. The above specific dynamic formulations will be used to compute the flutter solutions presented in the last sections. Numerical schemes are then given for computing the various sufficient or necessary conditions for instability established together with Professor J.A.C. Martins Finally, the stability analysis and the computation of flutter solutions are carried out for two examples: the sliding of a Polyurethane block on a plane and the squeal of a rubber waist seal sliding on a car window.

In Section 1, a variational inequality formulation and numerical methods for solving quasistatic problems in elasticity are briefly recalled. Details can be found in a previous CISM course volume (see Raous (1999)).

This approach is extended to dynamic problems in Section 2. The formulation is written in terms of differential measures in order to deal with the non-smooth character of the solutions. It is an extension of those developed by J.J. Moreau and M. Jean.

In Section 3, the above formulations are extended to hyper-elastic problems and a method for computing directly the steady sliding solution is given.

Numerical analysis of the stability of quasistatic solutions in the context of linear elasticity is carried out in Section 4. The example of the sliding of a Polyurethane block is studied.

In Section 5, the stability analysis is carried out for a steady sliding solution in the context of hyper-elasticity and used to characterize the squeal of a waist seal sliding on a car window.

This work has been conducted within an International Program of Scientific Collaboration (PICS) between CNRS and JNICT with Professor J.A.C. Martins (IST — Lisbon) involving the theses of S. Barbarin, D. Vola in Marseille and the one of A. Pinto da Costa in Lisbon. The study on the waist seal presented in sections 3 and 5 has been supported by Renault.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Barbarin (1997) Instabilité et frottement en élasticité linéaire. Application à un problème d’ondes de contrainte, Thesis, Université de Provence, Marseille.

    Google Scholar 

  • G. Björkman, A. Klarbring, B. Sjödin, T. Larsson and M. Rönnqvist (1995). Sequential quadratic programming for non-linear elastic contact problems, Int. J. Numer. Meth. Engng., 38, 137–165.

    Article  MATH  Google Scholar 

  • P. Chabrand, F. Dubois and M. Raous (1998). Various numerical methods for solving unilateral contact problems with friction, Mathl. Comput. Modelling., 28, 97–108.

    Article  MATH  Google Scholar 

  • X. Chateau and Q.S. Nguyen (1991). Buckling of elastic structures in unilateral contact with or without friction, Eur. J. Mech., A/Solids, 10, 71–89.

    MATH  MathSciNet  Google Scholar 

  • R.W. Clough and J. Penzien (1975). Dynamics of structures, Int. Stud Eds, Mc Graw Hill, Kogakuska.

    MATH  Google Scholar 

  • M. Cocu, E. Pratt and M. Raous (1996). Formulation and approximation of quasistatic frictional contact, Int. J. Engng. Sci., 34, 7, 783–798.

    Article  MATH  MathSciNet  Google Scholar 

  • R. W. Cottle, J. S. Pang and R. Stone (1992). The linear complementarily problem, Computer Science and Scientific Computing, Academic press, New-York.

    Google Scholar 

  • A. Curnier and P. Alart (1988). A generalized Newton method for contact problems with friction, J. Méca. Th. Appl., 7, 67–82.

    MATH  MathSciNet  Google Scholar 

  • B. Feeny, A. Guran, N. Hinrichs and K. Popp (1998). A historical review on dry friction and stick-slip phenomena, Appl. Mech. Rev., 51, 321–341.

    Article  ADS  Google Scholar 

  • M. S. Gadala (1986). Numerical solutions of nonlinear problems of continua–II. A survey of incompressibility constraints and software aspects, Comput. Struct., 22, 841–855.

    Article  MATH  MathSciNet  Google Scholar 

  • Q. C. He, J. J. Telega and A. Curnier (1996). Unilateral contact of two solids subject to large deformations: formulation and existence results, Proc. R. Soc. Lond. A, 452, 2691–2717.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • R.A. Ibrahim (1994). Friction-induced vibration, chatter, squeal and chaos: Part I–Mechanics of friction, Part II–Dynamics and modeling, Appl. Mech. Rev, 47, 209–253.

    Article  ADS  Google Scholar 

  • G. Isac (1992). Complementarity problems, Lecture notes in Mathematics, 1528, Springer Verlag.

    MATH  Google Scholar 

  • M. Jean and J.J. Moreau (1987). Dynamics in the presence of unilateral contact and dry friction: a numerical approach, in Del Piero and Maceri (Eds.), Unilateral problems in structural analysis - 2, CISM lectures vol. 304, Springer Verlag, 151–196.

    Google Scholar 

  • M. Jean (1999). The non smooth contact dynamics method, Comput. Meth. Appl. Mech. Engng., 177, 235–257.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • N. Josephy (1979). Newton’s method for generalized equations, Report TSR 1965, Mathematics research center, University of Wisconsin.

    Google Scholar 

  • A. Klarbring (1988). On discrete and discretized non-linear elastic structures in unilateral contact (stability, uniqueness and variational principles), Int. J. Solids Structures, 24, 459–479.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Klarbring (1990). Derivation and analysis of rate boundary-value problems of frictional contact, Eur. J. Mech., A/Solids, 9, 53–85.

    MATH  MathSciNet  Google Scholar 

  • A. Klarbring and G. Björkmann (1992). Solution of large displacement contact problems with friction using Newton’s method for generalized equations, Int. J. Numer. Meth. Engng., 34, 249–269.

    Article  MATH  Google Scholar 

  • A. Klarbring (1997). Steady sliding and linear complementarity, in M. Ferris and J. C. Pang (Eds.), Complementarity and variational problems: state of the art, SIAM publication, Philadelphia, 132–147.

    Google Scholar 

  • A. Klarbring (1999). Contact, friction, discrete mechanical structures and mathematical programming, in P. Wriggers–P. Panagiotopoulos (Eds.), New developments in contact problems, CISM Courses and Lectures, 384, Springer Verlag, 55–100.

    Google Scholar 

  • A.M. Lang and D.A. Crolla (1991). Brake noise and vibration, the state of art, Vehicle Tribology, Tribologies series, 18, 165–173.

    Article  Google Scholar 

  • C.E. Lemke (1980). A survey of complementarity theory, in Cottle-Gianessi-Lions (Eds), Variational Inequalities and Complementarily Problems, John Wiley, New York, 213–235.

    Google Scholar 

  • C. Licht, E. Pratt and M. Raous (1991). Remarks on a numerical method for unilateral contact including friction, Int. Series Num. Math., 101, 129–144.

    MathSciNet  Google Scholar 

  • C. H. Liu, G. Hofstetter and H. A. Mang (1994). 3D finite element analysis of rubber-like materials at finite strains, Engng. comput., 11, 111–128.

    Google Scholar 

  • J. A. C. Martins, J. T. Oden and F. M. F. Simbes (1990). A study of static and kinetic friction, Int. J. Engng. Sci., 28, 29–92.

    Article  MATH  Google Scholar 

  • J. A. C. Martins, S. Barbarin, M. Raous and A. Pinto da Costa (1999). Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction, Comput. Meth. Appl. Mech. Engng., 177, n 3–4, 289–328.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • J. A. C. Martins and A. Pinto da Costa (2000). Stability of finite dimensional systems with unilateral contact and friction: non-linear elastic behaviour and obstacle curvature, Int. Journal of Solids and Structures, 37, 2519–2564.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Moirot (1998). Etude de la stabilité d’un équilibre en présence de frottement de Coulomb, application au crissement des freins à disques, Ph.D. Thesis, Ecole Polytechnique, Paris, France.

    Google Scholar 

  • J.-J. Moreau (1988a). Unilateral contact and dry friction in finite freedom dynamics, in Non Smooth Mechanics and Applications, CISM Courses and Lectures, 302, J.-J. Moreau, P.D. Panagiotopoulos (Eds), Springer-Verlag, Wien, 1–82.

    Chapter  Google Scholar 

  • J.-J. Moreau (1988b). Bounded variation in time, In Moreau-Paniagiatopoulos-Strang (Eds), Topics in non-smooth mechanics, Birkhauser Verlag, 1–74.

    Google Scholar 

  • J.-J. Moreau (1994). Some numerical methods in multibody dynamics: application to granular materials, Eur. J. Mech. A/Solids, 13 (4), 93–114.

    MATH  MathSciNet  Google Scholar 

  • Q.S. NGuyen (1994). Bifurcation and stability in dissipative media (plasticity, friction, fracture), Appl. Mech. Rev., 47, 1–31.

    Article  ADS  Google Scholar 

  • J.T. Oden and N. Kikuchi (1982). Finite element methods for constrained problems in elasticity, Int. J. Num. Meth. Eng., 19, 701–725.

    Article  MathSciNet  Google Scholar 

  • J. T. Oden and J. A. C. Martins (1985). Models and computational methods for dynamic friction phenomena, Comput. Meth. Appl. Mech. Engng., 52, 527–634.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • R.W. Ogden (1976). Volume change associated with the deformation of rubber-like solids, J. Mech. Phys. Solids, 24, 323–338.

    Article  ADS  Google Scholar 

  • S. Pandit and S. Deo (1982). Differential systems involving impulses, Lectures notes in mathematics, Springer Verlag.

    MATH  Google Scholar 

  • A.M.F. Pinto da Costa (2001). Instabilidade e bifurcaçaöes em sistemas de comportamento nâo-suave, Thesis, Istituto Supérior Tecnico, Lisbon, Portugal.

    Google Scholar 

  • E. B. Pires and L. Trabucho (1990). The steady sliding problem with nonlocal friction, Int. J. Engng. Sci., 28, 631–641.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Rabier, J. A. C. Martins, J. T. Oden and L. Campos (1986). Existence and local uniqueness of solutions for contact problems with non-linear friction laws, Int. J. Engng. Sci., 24, 1755–1768.

    Article  MATH  MathSciNet  Google Scholar 

  • C. Rajakumar and C. Rogers (1991). The Lanczos algorithm applied to unsymmetric generalized eigenvalue problem, Int. J. Numer. Meth. Engng., 32, 1009–1026.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Ralston and P. Rabinowitz (1978). A first course in numerical analysis, McGRAW-HILL, New-York.

    MATH  Google Scholar 

  • M. Raous (Ed) (1988). Numerical methods in mechanics of contact involving friction,J. de Mécanique Théorique et Appliquée, Special Issue, Supp. 1 to vol. 7, Gauthier-Villars.

    Google Scholar 

  • M. Raous, P. Chabrand and F. Lebon (1988). Numerical methods for solving unilateral contact problems with friction, in [Raous (Ed.), 1988], 111–128.

    Google Scholar 

  • M. Raous and S. Barbarin (1992). Conjugate Gradient for Frictional Contact, In Curnier A. (Ed), Proceedings of Contact Mechanics International Symposium, Presses Polytech. et Univ. Romandes, Lausanne, 423–432.

    Google Scholar 

  • M. Raous, J.-J. Moreau and M. Jean (Eds) (1995). Contact Mechanics, Plenum Publisher, New York.

    Google Scholar 

  • M. Raous, S. Barbarin, D. Vola and J.A.C. Martins (1995). Friction induced instabilities and sound generation, Proceed. ASME Design Engineering Technical Conference, 18–21 september 1995, Boston, USA, 799–802.

    Google Scholar 

  • M. Raous and S. Barbarin (1996). Stress waves in a sliding contact. Part 2: modelling, in D. Dowson et al. (Eds.), Proceedings of the 22 nd Leeds Lyon Symposium on Tribology, Elsevier Science, 39–44.

    Google Scholar 

  • M. Raous (1999). Quasistatic Signorini problem with Coulomb friction and coupling to adhesion, in P. Wriggers, P. Panagiotopoulos (Eds.), New developments in contact problems, CISM Courses and Lectures, 384, Springer Verlag, 101–178.

    Google Scholar 

  • M. Raous (2001), Constitutive models and numerical methods for frictional contact, In J.Lemaitre (Ed.), Handbook of material behavior–Non linear models and properties, Section 8.5, Academic Press, 777–786.

    Google Scholar 

  • R. T. Rockafellar (1970). Convex analysis, Princeton University Press.

    Google Scholar 

  • J. C. Simo and R. L. Taylor (1991). Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comput. Meth. Appl. Mech. Engng., 85, 272–310.

    Article  ADS  MathSciNet  Google Scholar 

  • T. Sussman and K.J. Bathe (1987). A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comp. Stryct., 26, 1–2.

    Article  Google Scholar 

  • D. Vola (1998). Frottement et instabilités en dynamique: bruit de crissement, thesis, Université de la Méditerranée, Marseille, France.

    Google Scholar 

  • D. Vola, E. Pratt, M. Jean and M. Raous (1998). Consistent time discretization for a dynamical frictional contact problem and complementarity techniques, Revue Européenne des Eléments Finis, 7, 149–162.

    MATH  Google Scholar 

  • D. Vola, A. Pinto da Costa, S. Barbarin, J.A.C. Martins and M. Raous (1999). Bifurcations and instabilities in some finite dimensional frictional contact problems, in F. Pfeiffer, Ph. Glocker (Eds), Proceedings of 1998 IUTAM symposium: unilateral multibody dynamics, Kluwer, 179–190.

    Google Scholar 

  • D. Vola, A. M. Raous and J.A.C. Martins (1999). Friction and instability of steady sliding: squeal of a rubber/glass contact, International Journal for Numerical Methods in Engineering, 46, 1699–1720.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • P. Wriggers, T. Vu Van and E. Stein (1990). Finite element formulation for large deformation impact-contact problems with friction, Comp. Struct., 37 (3), 319–331.

    Article  MATH  Google Scholar 

  • T. Zeghloul and B. Villechaise (1996). Stress waves in a sliding contact. Part 1: experimental study, in D. Dowson et al. (Eds.), Proceedings of the 22 nd Leeds Lyon Symposium on Tribology, Elsevier Science, 33–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this chapter

Cite this chapter

Raous, M., Barbarin, S., Vola, D. (2002). Numerical characterization and computation of dynamic instabilities for frictional contact problems. In: Martinis, J.A.C., Raous, M. (eds) Friction and Instabilities. International Centre for Mechanical Sciences, vol 457. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2534-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2534-2_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83695-8

  • Online ISBN: 978-3-7091-2534-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics