Advertisement

Some Notes on Friction and Instabilities

  • J. A. C. Martins
  • A. Pinto da Costa
  • F. M. F. Simões
Part of the International Centre for Mechanical Sciences book series (CISM, volume 457)

Abstract

These lectures address some topics related to instability, bifurcation and non-smoothness in finite dimensional frictional contact problems, as well as instability, ill-posedness and regularization procedures in some infinite dimensional problems.

Keywords

Complementarity Problem Equilibrium Configuration Frictional Contact Closed Convex Cone Surface Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, G.G. (1995). Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction. ASME J. Appl. Mechanics, 62, 867–872.ADSCrossRefMATHGoogle Scholar
  2. Adams, G.G. (1998a). Dynamic instabilities in the sliding of two layered elastic half-spaces, ASME J. Tribology, 120, 289–295.CrossRefGoogle Scholar
  3. Adams, G.G. (1998b). Steady sliding of two elastic half-spaces with friction reduction due to interface stick-slip. ASME J. Appl. Mechanics, 65, 470–475.ADSCrossRefGoogle Scholar
  4. Andrew, C., Cockburn, J.A. and Waring, A.E. (1967–68). Metal surfaces in contact under normal forces: some dynamic stiffness and damping characteristics. Proc. Instn. Mech. Engrs., 182, 92–100.Google Scholar
  5. Back, N., Burdekin, M. and Cowley, A. (1973). Review of the research on fixed and sliding joints. In Tobias, S.A. and Koenigsberger, F., eds., Proc. 13th International Machine Tool Design and Research Conference, MacMillan, London, 87–97.Google Scholar
  6. Bigoni, D. and Willis, J.R. (1994). A dynamical interpretation of flutter instability. In Chambon, R., Desrues, J. and Vardoulakis, I., eds., Localisation and Bifurcation Theory for Soils and Rocks, Balkema, Rotterdam, The Netherlands, 51–58.Google Scholar
  7. Björkman, G. (1992). Path following and critical points for contact problems. Computational Mechanics, 10, 231–246.ADSCrossRefMATHMathSciNetGoogle Scholar
  8. Blok, H. (1940). Fundamental mechanical aspects of boundary lubrication. S.A.E. Journal, 46 (2), 54–68.Google Scholar
  9. Chateau X., Nguyen, Q.S. (1991). Buckling of elastic structures in unilateral contact with or without friction. Eur. J. Mech., A/Solids, 10 (1), 71–89.MATHMathSciNetGoogle Scholar
  10. Cho, H., Barber, J.R. (1999). Stability of the three-dimensional Coulomb friction law. Phil. Trans. R. Soc. Lond., Series A, 455 (1983), 839.ADSMATHMathSciNetGoogle Scholar
  11. Cochard, A. and Rice, J. R. (2000). Fault rupture between dissimilar materials: ill-posedness, regularization and slip-pulse response. J. Geophys. Res., 105, 891–908.CrossRefGoogle Scholar
  12. Cocu, M. (1984). Existence of solutions of Signorini problems with friction. Int. J. Engng Sci., 22 (5), 567–575.CrossRefMATHMathSciNetGoogle Scholar
  13. Comninou, M. and Dundurs, J. (1977). Elastic interface waves involving separation. ASME J. Appl. Mech., 44, 222–226.ADSCrossRefGoogle Scholar
  14. Comninou, M. and Dundurs, J. (1978). Elastic interface waves and sliding between two solids. ASME J. Appl. Mech., 45, 325–330.ADSCrossRefMATHGoogle Scholar
  15. Cottle R.W., Pang, J.-S., Stone, R.E. (1992). The Linear Complementarily Problem, Academic Press, Boston.Google Scholar
  16. De Moor, B., Vandenberghe, L. and Vandewalle, J. (1992). The generalized linear complementarity problem and an algorithm to find all its solutions. Mathematical Programming, Series A, 57 (3), 415–426.MATHGoogle Scholar
  17. De Saxce G. and Feng, Z.Q. (1991). New inequation and functional for contact with friction: the implicit standard material approach, Mech. Struct. & Mach., 19 (3), 301–325.CrossRefGoogle Scholar
  18. Désoyer, T. and Martins, J. A. C. (1998). Surface instabilities in a Mooney-Rivlin body with frictional boundary conditions. International Journal of Adhesion & Adhesives, 18, 413–419.CrossRefGoogle Scholar
  19. Dieterich, J. H. (1978). Time-dependent friction and the mechanics of stick-slip. Pageoph., 116, 790–806.CrossRefGoogle Scholar
  20. Dirkse, S.P., Ferris, M.C. (1995). The PATH solver: A non-monotone stabilitization scheme for mixed complementarity problems. Optimization Methods and Software, 5, 123–156.CrossRefGoogle Scholar
  21. D’Souza, A. F. and Dweib, A. H. (1990). Self-excited vibrations induced by dry friction, Part 2: Stability and limit-cycle analysis, J. Sound Vibration, 137 (2), 177–190.ADSCrossRefGoogle Scholar
  22. Duvaut, G. (1982). Loi de frottement non locale. Journal de Mécanique théorique et apliquée, Numéro Spécial, 73–78.Google Scholar
  23. Dweib, A. H. and D’Souza, A. F. (1990). Self-excited vibrations induced by dry friction, Part 1: Experimental study. J. Sound Vibration, 137 (2), 163–175.ADSCrossRefGoogle Scholar
  24. Earles, S. W. E. and Badi, M. N. M. (1984). Oscillatory instabilities generated in a double-pin and disc undamped system: a mechanism of disc-brake squeal. Proc. Inst. Mech. Engrs., 198C (4), 43–50.CrossRefGoogle Scholar
  25. Frémond, M. (1995). Rigid body collisions. Physics Letters A, 204, 33–41.ADSCrossRefMATHMathSciNetGoogle Scholar
  26. Fung, Y.C. (1965). Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  27. Hadamard, J. (1903). Leçons sur la Propagation des Ondes et les Equations de l’Hydrodynamique, Hermann, Paris.Google Scholar
  28. Hyers, D.H., Isac, G. and Rassias, T.M. (1997). Topics in Nonlinear Analysis & Applications, World Scientific Publishing, Singapore, New Jersey, London.CrossRefMATHGoogle Scholar
  29. Ibrahim, R.A. (1994). Friction-induced vibration, chatter, squeal and chaos, Part I: Mechanics of contact and friction, Part II: Dynamics and modelling. ASME Applied Mechanics Reviews, 47, 209–253.ADSCrossRefGoogle Scholar
  30. Jarvis, R. P. and Mills, B. (1963–64). Vibrations induced by dry friction. Proc. Inst. Mech. Engrs.,178-Pt 1 (32), 847–866.Google Scholar
  31. Jean, M., Moreau, J.J. (1992). Unilaterality and dry friction in the dynamics of rigid body collections. In Curnier, A., ed., Proc. Contact Mechanics Int. Symp., Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 31–48.Google Scholar
  32. Klarbring, A. (1988). On discrete and discretized non-linear elastic structures in unilateral contact (stability, uniqueness and variational principles). Int. J. Solids Structures, 24 (5), 459–479.CrossRefMATHMathSciNetGoogle Scholar
  33. Klarbring, A. (1990a). Examples of non-uniqueness and non-existence of solutions to quasistatic contact problems with friction. Ingenieur-Archiv, 56, 529–541.Google Scholar
  34. Klarbring, A. (1990b). Derivation and analysis of rate boundary-value problems of frictional contact. Eur. J. Mech., A/Solids, 9 (1), 53–85.MATHMathSciNetGoogle Scholar
  35. Klarbring, A. (1999). Contact, friction, discrete mechanical structures and mathematical programming In Wriggers, P. and Panagiotopoulos, P., eds., New Developments in Contact Problems, CISM Courses and Lectures, Springer-Verlag, Wien, New York, 384, 55–100.Google Scholar
  36. Kreiss, H.-O. and Lorenz, J. (1989). Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, Boston.MATHGoogle Scholar
  37. Mandel, J. (1964). Conditions de stabilité et postulat de Drucker. In Kravtchenko, G. and Sirieys, P., eds., Rheology and Soil Mechanics, IUTAM Symposium, Grenoble, 58–68.Google Scholar
  38. Martins, J.A.C. and Oden, J.T. (1987). Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Analysis, Theory, Methods and Applications, 11, 407–428, with corrigendum in 12, 747.Google Scholar
  39. Martins, J.A.C., Oden, J.T. and Simóes, F.M.F. (1990). A study of static and kinetic friction, Int. J. Engng Sci., 28, 29–92.CrossRefMATHGoogle Scholar
  40. Martins, J.A.C., Guimarâes, J. and Faria, L.O. (1991). On the origins of friction-induced oscillations. In Bayada, G., Chambat, M. and Durany, J., eds., Mathematical Modelling in Lubrication, Proceedings of an International Workshop on Mathematical Modelling in Lubrication, Vigo, Spain, October 1990, Publicacions da Universidade de Vigo, 72–78.Google Scholar
  41. Martins, J.A.C. and Faria, L.O. (1991). Friction-induced surface instabilities and oscillations in nonlinear elasticity. In Rencontres Scientifiques du Cinquentenaire du Laboratoire de Mécanique et Acoustique, Publications du L.M.A, Marseille, 124, 31–50.Google Scholar
  42. Martins, J.A.C., Faria, L.O. and Guimarâes, J. (1992). Dynamic surface solutions in linear elasticity with frictional boundary conditions. In Ibrahim R.A. and Soom A., eds., Friction-Induced Vibration, Chatter, Squeal and Chaos, The American Society of Mechanical Engineers, New York, DE-49, 3339.Google Scholar
  43. Martins, J.A.C., Faria, L.O. and Guimarâes, J. (1995). Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions. ASME J. Vibration and Acoustics, 117, 445–451.CrossRefGoogle Scholar
  44. Martins, J.A.C. and Simóes, F.M.F. (1995). On some sources of instability/ill-posedness in elasticity problems with Coulomb’s friction. In Raous, M., Jean, M. and Moreau, J.J., eds., Contact Mechanics, Plenum Press, New York and London, 95–106.CrossRefGoogle Scholar
  45. Martins, J.A.C., Barbarin S., Raous M., A. Pinto da Costa (1999). Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction. Computer Methods in Applied Mechanics and Engineering, 177/3–4, 289–328.ADSCrossRefMATHMathSciNetGoogle Scholar
  46. Martins, J.A.C., Pinto da Costa, A. (2000). Stability of finite dimensional nonlinear elastic systems with unilateral contact and friction. Int. J. Solids Structures, 37, 2519–2564.CrossRefMATHMathSciNetGoogle Scholar
  47. Monteiro Marques, Manuel D.P. (1993). Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, Birkhauser, Basel, Boston, Berlin.CrossRefMATHGoogle Scholar
  48. Moreau, J.J. (1988). Unilateral contact and dry friction in finite freedom dynamics. In Moreau, J.J. and Panagiotopoulos, P.D., eds., Nonsmooth Mechanics and Applications, CISM Courses and Lectures, Springer-Verlag, Wien, New York, 302, 1–81.CrossRefGoogle Scholar
  49. Moreau, J.J. (1994). Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech., A/Solids, 13 (4), 93–114.MATHMathSciNetGoogle Scholar
  50. Mróz, Z., Plaut, R.H. (1992). On the stability and post-critical behaviour of elastic structures with dry friction. Int. J. Solids Structures, 29 (10), 1241–1253.CrossRefMATHGoogle Scholar
  51. Mülhaus, H. B. and Vardoulakis, I. (1987). The thickness of shear bands in granular material. Geotechnique, 37, 271–283.CrossRefGoogle Scholar
  52. Needleman, A. (1988). Material rate dependence and mesh sensitivity in localization problems. Comp. Meth. Appl. Mech. Eng., 67, 69–85.CrossRefMATHGoogle Scholar
  53. Nguyen, Q. S. (1993). Bifurcation and Stability of Dissipative Systems, CISM Courses and Lectures, Springer-Verlag, Wien, New York, 327.CrossRefGoogle Scholar
  54. Nguyen, Q.S. (2000). Stabilité et Mécanique Non-Linéaire, Hernies Science Publications, Paris.MATHGoogle Scholar
  55. Oden, J.T. and Pires, E.B. (1983). Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity. J. Appl. Mech., 50, 67–76.ADSCrossRefMATHMathSciNetGoogle Scholar
  56. Oden, J.T. and Martins, J.A.C. (1985). Models and computational methods for dynamic friction phenomena. Comp. Meth. Appl. Mech. Eng., 52, 527–634.CrossRefMATHMathSciNetGoogle Scholar
  57. Örs, H. and Prevost, J. H. (1995). On the well posedness of the initial value problem in elastoplastodynamics for a linear comparison solid. Acta Mechanica, 111, 181–192.CrossRefMATHMathSciNetGoogle Scholar
  58. Pang, J.-S. and Trinkle, J.C. (1996). Complementarity formulation and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Mathematical Programming, 73, 199–226.CrossRefMATHMathSciNetGoogle Scholar
  59. Petrovsky, I. G. (1954). Lectures on Partial Differential Equations, Interscience Publishers, New York.MATHGoogle Scholar
  60. Petryk, H. (1993). General theory of bifurcation and stability in time-independent plasticity. In Nguyen, Q.S., ed., Bifurcation and Stability of Dissipative Systems, CISM Courses and Lectures, Springer-Verlag, Wien, New York, 327.Google Scholar
  61. Petryk, H. (2000). Material Instabilities in Elastic and Plastic Solids, CISM Courses and Lectures, Springer, Wien, New York, 414.CrossRefMATHGoogle Scholar
  62. Pijaudier-Cabot, G. and Bazant, Z.P. (1987). Nonlocal damage theory. ASCE J. Eng. Mech., 113, 1512–1533.CrossRefGoogle Scholar
  63. Pinto da Costa, A., Figueiredo, I.N., Júdice, J.J. and Martins, J.A.C. (2001). A Complementarity eigen-problem in the stability analysis of finite dimensional elastic systems with frictional contact. In Ferris, M.C., Mangasarian, O.L. and Pang, J.-S., Complementarity: Applications, Algorithms and Extensions, Applied Optimization, Kluwer Academic Publishers, Dordrecht, Boston, London, 20, 6783.Google Scholar
  64. Pires, E. B. (1982). Analysis of nonclassical friction laws for contact problems in elastostatics, Ph.D. Thesis, The University of Texas at Austin, Austin, Texas.Google Scholar
  65. Prakash, V. (1998). Frictional response of sliding interfaces subjected to time varying normal pressures. Journal of Tribology, 120, 97–102.CrossRefGoogle Scholar
  66. Rabinowicz, E. (1958). The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. (London), 71, 668–675.ADSCrossRefGoogle Scholar
  67. Ranjith, K. and Rice, J. R. (2001). Slip dynamics at an interface between dissimilar materials. Journal of the Mechanics and Physics of Solids, 49, 341–361.ADSCrossRefMATHGoogle Scholar
  68. Renardy, M. (1992). Ill-posedness at the boundary for elastic solids sliding under Coulomb friction. J. Elasticity, 27, 281–287.CrossRefMATHMathSciNetGoogle Scholar
  69. Rice, J.R. (1976). The localization of plastic deformation. In Koiter, W.T., ed., Theoretical and Applied Mechanics, 14th IUTAM Congress, Delft, North-Holland, Amsterdam, The Netherlands, 207–220.Google Scholar
  70. Robinson, S. (1992). Normal maps induced by linear transformations. Mathematics of Operations Research, 17, 691–714.CrossRefMATHMathSciNetGoogle Scholar
  71. Ruina (1983). Slip instability and state variable friction laws. J. Geophys. Res., 88 (10), 359–370.Google Scholar
  72. Schaeffer, D. G. (1990). Instability and ill-posedness in the deformation of granular materials. Int. J. Num. Anal. Meth. Geomech., 14, 253–278.CrossRefMATHMathSciNetGoogle Scholar
  73. Scholz, C.H. (1990). The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge, U.K.Google Scholar
  74. Simóes, F.M.F. and Martins, J.A.C. (1998). Instability and ill-posedness in some friction problems. Int. J. Engng Sci., 36, 1265–1293.CrossRefMATHGoogle Scholar
  75. Spurr, R. T. (1961–62). A theory of brake squeal. Proc. Inst. Mech. Engrs. (A.D.), 1, 33–52.Google Scholar
  76. Stewart, D.E. (1998). Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painlevé’s problems. Archive of Rational Mechanics and Analysis, 145 (3), 215–260.ADSCrossRefMATHGoogle Scholar
  77. Stewart, D. E. and Trinkle, J. C. (1996). An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Num. Meth. Engrg., 39, 2673–2691.CrossRefMATHMathSciNetGoogle Scholar
  78. Triantafyllidis, N. and Aifantis, E.C. (1986). A gradient approach to localization of deformation–I. Hyperelastic materials. J. Elasticity, 16, 225–237.CrossRefMATHMathSciNetGoogle Scholar
  79. Trinkle, J.C., Pang, J.-S., Sudarsky, S. and Lo, G. (1997). On dynamic multi-rigid-body contact problems with Coulomb friction. ZAMM, 77 (4), 267–279.ADSCrossRefMATHMathSciNetGoogle Scholar
  80. Vola, D., Pinto da Costa, A., Barbarin, S., Martins, J.A.C. and Raous, M. (1999). Bifurcations and instabilities in some finite dimensional frictional contact problems. In Pfeiffer, F. and Glocker, Ch., eds., IUTAM Symposium on Unilateral Multibody Contacts, Solids Mechanics and its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 72, 179–190.CrossRefGoogle Scholar
  81. Woo, K. L. and Thomas, T. R. (1980). Contact of rough surfaces: a review of experimental work. Wear, 58, 331–340.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • J. A. C. Martins
    • 1
  • A. Pinto da Costa
    • 1
  • F. M. F. Simões
    • 1
  1. 1.Instituto Superior TécnicoDep. Eng. Civil and ICISTLisboaPortugal

Personalised recommendations