Advertisement

Statics and Dynamics of Manipulators

  • Adam Morecki
  • Józef Knapczyk
Part of the International Centre for Mechanical Sciences book series (CISM, volume 402)

Abstract

Each of the manipulator joints usually has a separate drive. Drive forces, as well as torques acting in joints, are distributed through the manipulator links to the end-effector (gripper) on which the environment also exerts a force and torque. The relationship between input (drive) and output (acting on the end-effector) forces and torques constitutes the basis of a control system.

Keywords

Constraint Equation Jacobian Matrix Kinematic Analysis Kinematic Chain Revolute Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [5.1]
    Armstrong B., Khatib O., Burdick J: The Explicit Dynamic Model and Inertial Parameters of the PUMA 560 Arm: Proc. of the IEEE, Int. Conf. on Robotics and Automation, San Francisco 1986, s. 510–518.Google Scholar
  2. [5.2]
    Asada H., Slotine J. J E.: Robot Analysis and Control. New York, Wiley 1986.Google Scholar
  3. [5.3]
    Brady M at al: Robot Motion. MIT Press 1983.Google Scholar
  4. [5.4]
    Burdick J W.: An Algorithm for Generation of Efficient Manipulator Dynamic Equations. Proc. of the IEEE, Int. Conf. on Robotics and Automation, San Francisco 1986, s. 212–218.Google Scholar
  5. [5.5]
    Craig J J: Introduction to Robotics. Mechanics and Control. Addison-Wesley 1989Google Scholar
  6. [5.6]
    Frolov K. V, Vorobiev E. J.: Mechanics of Industrial Robots. Moscow, Vyssaja Skola, 1988 (in Russian).Google Scholar
  7. [5.7]
    Gupta S, Townsend M. A.: On the Equations of Motion for Robot Arms and open Kinematic Chains. Trans. ASME, J. Mech., Transm. Autom. in Design, vol. 110, sept.1988, s. 287–294.Google Scholar
  8. [5.8]
    Haug E. J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Vol. 1 Basic Methods. Allyn and Bacon, Boston 1989.Google Scholar
  9. [5.9]
    Knapczyk J., Lebiediew P. A.: Theory of Spatial Mechanisms and Manipulators. Warsaw, WNT, 1990 (in Polish).Google Scholar
  10. [5.10]
    Kolovskij M. E., Sluosz A. W.: Bases of Dynamics of Industrial Robots. Moscow, Nauka 1988 (in Russian).Google Scholar
  11. [5.11]
    Olçdzki A.: Bases of Theory of Machines and Mechanismes. Warsaw, WNT 1987 (in Polish).Google Scholar
  12. [5.12]
    Paul R. P.: Robot Manipulators: Mathematics, Programming and Control. Cambridge, MIT Press 1981.Google Scholar
  13. [5.13]
    Pennock G. R., Yang A. T.: Dynamic Analysis of Multi-Rigid Body Open Chain Systems. Trans.ASME, J. Mech., Transm. and Autom. Design, vol. 105, s. 28–34, 1983.Google Scholar
  14. [5.14]
    Vukobratovic M., Potkonjak V: Dynamics of Manipulation Robots. Berlin, Springer, 1983.Google Scholar
  15. [5.15]
    Busko Z, Frqczek J., Kaminski D., Morecki A.: Designing and Modeling of Elastic Manipulators. Proc. of XII Conf. TMM, Bielsko-Biala 1989.Google Scholar
  16. [5.16]
    Roth B., Rastegor J., Scheinman V: On the design of Computer Controlled Manipulators. First CISM—IFtoMM Symposium on Theory and Practice of Robots and Manipulators, Vol. I, Udine, Springer-Verlag 1974.Google Scholar
  17. [5.17]
    Thring, M. W: Robots and Telechirs, Ellis Horwood Limited, Publishers. Chichester, 1983.Google Scholar
  18. [5.18]
    Umetani Y, Hirose S.: Biomechanical Study of Serpentine Locomotion, First CISM-IFtoMM Symposium on Theory and Practice of Robots and Manipulators, Vol. 1, Udine, Springer-Verlag 1974.Google Scholar
  19. [5.19]
    Hirose S., Ikuta K, Umetani Y.: A New Design Method of Servoactuators Based on the Shape Memory Effect, Proc. Ro.Man.Sy’84; The Fifth CISM-IFtoMM Symposium. London, Kogan Page,. Hermes Publishing 1985.Google Scholar
  20. [5.20]
    Malczyk G., Morecki A.: Elastic Manipulator of the Elephant Trunk Type, Biocybernetics and Biomedical Engineering, 1987, Vol. 7, No 1–4, s. 155–168.Google Scholar
  21. [5.21]
    Morecki A., Ekiel J, Fidelus K: Bionics of Motion. Warsaw, PWN, 1971 (in Polish).Google Scholar
  22. [5.22]
    Wilson J. F. at al: A continuum model of Elephant trunks, Manuscript (presented of Piza Conference, 1978)Google Scholar
  23. [5.23]
    Cieslak R.: Elastic Manipulator, Construction and Static Analysis. Master Thesis. Warsaw Univ. of Technology, Warsaw 1990.Google Scholar
  24. [5.24]
    Frqczek J: Computer Method of Dynamic Analysis of Kinematic Chain of Manipulators. Doct. Dissertation, Warsaw Univ. of Technology, Warsaw 1990.Google Scholar
  25. [5.25]
    Morecki A., Busko Z., Czerwinski M, Fraczek J.: Elaboration of Robot Model With Elastic Manipulation Chain. Proc. of MERA—PIAP, CPBR 7.1, Warsaw1989. (in Polish)Google Scholar
  26. [5.26]
    Spine-Robotics, Sweden 1983.Google Scholar
  27. [5.27]
    Spine News, Sweden 1984.Google Scholar
  28. [5.28]
    Lhote F., at al: Robots Components and Systems. Robot Technology. Vol. 4, Kogan Page, London, 1984.Google Scholar
  29. [5.29]
    Wilson J. F., Mahajan V.: The Mechanics and Positioning of Highly Flexible Manipulator Limbs. Jnl of Mechanisms. Transm. and Autom. in Design., Trans. ASME, June 1989.Google Scholar
  30. [5.30]
    Frqczek J.: Dynamics of Mechanical Systems with Coulomb Friction. Archive of Mechanical Engineering, Vol 40, No 1, Warsaw 1993.Google Scholar
  31. [5.31]
    Frqczek J: Dynamic Analysis of Elastic Manipulators. Archive of Mechanical Engineering, Vol 38, No 3, Warsaw 1991.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Adam Morecki
    • 1
  • Józef Knapczyk
    • 2
  1. 1.Warsaw University of TechnologyPoland
  2. 2.Cracow University of TechnologyPoland

Personalised recommendations