Statics and Dynamics of Manipulators

  • Adam Morecki
  • Józef Knapczyk
Part of the International Centre for Mechanical Sciences book series (CISM, volume 402)


Each of the manipulator joints usually has a separate drive. Drive forces, as well as torques acting in joints, are distributed through the manipulator links to the end-effector (gripper) on which the environment also exerts a force and torque. The relationship between input (drive) and output (acting on the end-effector) forces and torques constitutes the basis of a control system.


Constraint Equation Jacobian Matrix Kinematic Analysis Kinematic Chain Revolute Joint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [5.1]
    Armstrong B., Khatib O., Burdick J: The Explicit Dynamic Model and Inertial Parameters of the PUMA 560 Arm: Proc. of the IEEE, Int. Conf. on Robotics and Automation, San Francisco 1986, s. 510–518.Google Scholar
  2. [5.2]
    Asada H., Slotine J. J E.: Robot Analysis and Control. New York, Wiley 1986.Google Scholar
  3. [5.3]
    Brady M at al: Robot Motion. MIT Press 1983.Google Scholar
  4. [5.4]
    Burdick J W.: An Algorithm for Generation of Efficient Manipulator Dynamic Equations. Proc. of the IEEE, Int. Conf. on Robotics and Automation, San Francisco 1986, s. 212–218.Google Scholar
  5. [5.5]
    Craig J J: Introduction to Robotics. Mechanics and Control. Addison-Wesley 1989Google Scholar
  6. [5.6]
    Frolov K. V, Vorobiev E. J.: Mechanics of Industrial Robots. Moscow, Vyssaja Skola, 1988 (in Russian).Google Scholar
  7. [5.7]
    Gupta S, Townsend M. A.: On the Equations of Motion for Robot Arms and open Kinematic Chains. Trans. ASME, J. Mech., Transm. Autom. in Design, vol. 110, sept.1988, s. 287–294.Google Scholar
  8. [5.8]
    Haug E. J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Vol. 1 Basic Methods. Allyn and Bacon, Boston 1989.Google Scholar
  9. [5.9]
    Knapczyk J., Lebiediew P. A.: Theory of Spatial Mechanisms and Manipulators. Warsaw, WNT, 1990 (in Polish).Google Scholar
  10. [5.10]
    Kolovskij M. E., Sluosz A. W.: Bases of Dynamics of Industrial Robots. Moscow, Nauka 1988 (in Russian).Google Scholar
  11. [5.11]
    Olçdzki A.: Bases of Theory of Machines and Mechanismes. Warsaw, WNT 1987 (in Polish).Google Scholar
  12. [5.12]
    Paul R. P.: Robot Manipulators: Mathematics, Programming and Control. Cambridge, MIT Press 1981.Google Scholar
  13. [5.13]
    Pennock G. R., Yang A. T.: Dynamic Analysis of Multi-Rigid Body Open Chain Systems. Trans.ASME, J. Mech., Transm. and Autom. Design, vol. 105, s. 28–34, 1983.Google Scholar
  14. [5.14]
    Vukobratovic M., Potkonjak V: Dynamics of Manipulation Robots. Berlin, Springer, 1983.Google Scholar
  15. [5.15]
    Busko Z, Frqczek J., Kaminski D., Morecki A.: Designing and Modeling of Elastic Manipulators. Proc. of XII Conf. TMM, Bielsko-Biala 1989.Google Scholar
  16. [5.16]
    Roth B., Rastegor J., Scheinman V: On the design of Computer Controlled Manipulators. First CISM—IFtoMM Symposium on Theory and Practice of Robots and Manipulators, Vol. I, Udine, Springer-Verlag 1974.Google Scholar
  17. [5.17]
    Thring, M. W: Robots and Telechirs, Ellis Horwood Limited, Publishers. Chichester, 1983.Google Scholar
  18. [5.18]
    Umetani Y, Hirose S.: Biomechanical Study of Serpentine Locomotion, First CISM-IFtoMM Symposium on Theory and Practice of Robots and Manipulators, Vol. 1, Udine, Springer-Verlag 1974.Google Scholar
  19. [5.19]
    Hirose S., Ikuta K, Umetani Y.: A New Design Method of Servoactuators Based on the Shape Memory Effect, Proc. Ro.Man.Sy’84; The Fifth CISM-IFtoMM Symposium. London, Kogan Page,. Hermes Publishing 1985.Google Scholar
  20. [5.20]
    Malczyk G., Morecki A.: Elastic Manipulator of the Elephant Trunk Type, Biocybernetics and Biomedical Engineering, 1987, Vol. 7, No 1–4, s. 155–168.Google Scholar
  21. [5.21]
    Morecki A., Ekiel J, Fidelus K: Bionics of Motion. Warsaw, PWN, 1971 (in Polish).Google Scholar
  22. [5.22]
    Wilson J. F. at al: A continuum model of Elephant trunks, Manuscript (presented of Piza Conference, 1978)Google Scholar
  23. [5.23]
    Cieslak R.: Elastic Manipulator, Construction and Static Analysis. Master Thesis. Warsaw Univ. of Technology, Warsaw 1990.Google Scholar
  24. [5.24]
    Frqczek J: Computer Method of Dynamic Analysis of Kinematic Chain of Manipulators. Doct. Dissertation, Warsaw Univ. of Technology, Warsaw 1990.Google Scholar
  25. [5.25]
    Morecki A., Busko Z., Czerwinski M, Fraczek J.: Elaboration of Robot Model With Elastic Manipulation Chain. Proc. of MERA—PIAP, CPBR 7.1, Warsaw1989. (in Polish)Google Scholar
  26. [5.26]
    Spine-Robotics, Sweden 1983.Google Scholar
  27. [5.27]
    Spine News, Sweden 1984.Google Scholar
  28. [5.28]
    Lhote F., at al: Robots Components and Systems. Robot Technology. Vol. 4, Kogan Page, London, 1984.Google Scholar
  29. [5.29]
    Wilson J. F., Mahajan V.: The Mechanics and Positioning of Highly Flexible Manipulator Limbs. Jnl of Mechanisms. Transm. and Autom. in Design., Trans. ASME, June 1989.Google Scholar
  30. [5.30]
    Frqczek J.: Dynamics of Mechanical Systems with Coulomb Friction. Archive of Mechanical Engineering, Vol 40, No 1, Warsaw 1993.Google Scholar
  31. [5.31]
    Frqczek J: Dynamic Analysis of Elastic Manipulators. Archive of Mechanical Engineering, Vol 38, No 3, Warsaw 1991.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Adam Morecki
    • 1
  • Józef Knapczyk
    • 2
  1. 1.Warsaw University of TechnologyPoland
  2. 2.Cracow University of TechnologyPoland

Personalised recommendations