Skip to main content

The Inverse Kinematics of Manipulators

  • Chapter
Basics of Robotics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 402))

  • 733 Accesses

Abstract

The objective of inverse kinematics task is to find all the possible sets of angular or linear displacements (configuration coordinates) in the joints that allow of the end-effector (gripper or tool) of the manipulator to assume a certain position and/or orientation. This is a fundamental problem in the programming and control of manipulator motion, when it is necessary to determine how particular configuration coordinates change in time, in order to have the end-effector perform a desired motion of [4.2, 4.6–4.17]. For instance, in the simplest positioning task, “take and place”, the initial and final position of the end-effector are given as the time it takes to cover the distance between those two positions. The inverse kinematics solution entails determining the values of the configuration coordinates corresponding to these positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeles J: Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms. New York, Springer Verlag. 1997.

    Book  MATH  Google Scholar 

  2. Craig JJ: Introduction to Robotics. Addison-Wesley 1989

    Google Scholar 

  3. Duffj J: Analysis of Mechanisms and Robot Manipulators. London, E. Arnold, 1980.

    Google Scholar 

  4. Frolov K. V, Vorobiev E. J.: Mechanics of Industrial Robots. Vyssaja Skola, Moscow 1988.

    Google Scholar 

  5. Fu K. S, Gonzales R. C., Lee C. S. G.: Robotics: Control, Sensing, Vision, and Inteligence. McGraw-Hill 1987.

    Google Scholar 

  6. Hunt K. H.: Robot Kinematics. A Compact Analytic Inverse Solution for Velocities. Trans. ASME, Mech., Transm. and Autom. in Design, vol. 109, s. 42–49, 1987.

    Google Scholar 

  7. Hunt K. H.: The particular or the general? (some examples from robot kinematics). Mech. and Mach. Theory, vol. 21, no 6, s. 481–487, 1989.

    Google Scholar 

  8. Knapczyk J, Lebiediew P. A.: Theory of Spatial Mechanisms and Manipulators. Warszawa, WNT, 1990 (in Polish).

    Google Scholar 

  9. Lee H. Y., Woernle C., Hiller M.: A Complete Solution for the Inverse Kinematic Problem of the General 6R Robot Manipulator. Trans. ASME, Mech., Transm. and Autom. in Design, vol. 113, s. 481–486, 1991.

    Google Scholar 

  10. Lipkin H., Duffy J.: A Vector Analysis of Robot Manipulators. Recent Advances in Robotics. New York, Wiley, 1985.

    Google Scholar 

  11. Litvin F. L., Parenti Castelli V, Phillips R. H.: Manipulators: Execution of Prescribed Trajectories. Special Link Positions and Versions of Assembly. Mech. and Mach. Theory, vol. 21, no 2, s. 173–185, 1986.

    Google Scholar 

  12. Lloyd J., Hayward V.: Kinematics of Common Industrial Robots. Robotics 4 (1988), s. 169–191.

    Google Scholar 

  13. Manseur R., Doty K. L.: A Fast Algorithm for Inverse Kinematic Analysis of Robot Manipulators. Int. Robotics Research, vol. 7, no 3, s. 52–63, 1988.

    Google Scholar 

  14. Paul R. P.: Robot Manipulators: Mathematics, Programming and Control. Cambridge, MIT Press, 1981.

    Google Scholar 

  15. Pennock G. R., Yang A. T: Application of Dual-Number Matrices to the Inverse Kinematics Problem of Robot Manipulators. Trans. ASME, Mech. Transm. and Autom. in Design, vol. 107, no 2, s. 201–208, 1985.

    Google Scholar 

  16. Pieper D.L.: The Kinematics of Manipulators under Computer Control. Ph. D.Thesis, Stanford Univ. 1968.

    Google Scholar 

  17. Raghavan M, Roth B.: A General Solution for the Inverse Kinematics of all Series Chains. Proc. of the 8th CISM-IFToMM Symp. RoManSy’90 Cracow 1990, s.21–28.

    Google Scholar 

  18. Ranky P. G., Ho C. Y.: Robot Modelling Control and Applications with Software. Kempston, JFS 1985.

    Google Scholar 

  19. Tsai L. W., Morgan A.: Solving the Kinematics of the Most General Six-and Five-Degreeof-Freedom Mnipulators by Continuation Methods. Trans. ASME, Mech., Transm. and Autom. in Design, vol. 107, s. 189–200, 1985.

    Google Scholar 

  20. Angeles J, Zanganeh K E.: The semigraphical Determination of All Real Solutions of General Six-Revolute Manipulators. Proc. of the 9th CISM-IFToMM Symp. RoManSy’92, Udine. Springer Verlag 1993, s. 23–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this chapter

Cite this chapter

Morecki, A., Knapczyk, J. (1999). The Inverse Kinematics of Manipulators. In: Morecki, A., Knapczyk, J. (eds) Basics of Robotics. International Centre for Mechanical Sciences, vol 402. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2532-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2532-8_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83150-2

  • Online ISBN: 978-3-7091-2532-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics