Walking Machines

  • Adam Morecki
  • Józef Knapczyk
Part of the International Centre for Mechanical Sciences book series (CISM, volume 402)


The walking machine can be defined as “a technical device designed to perform functions similar to the locomotion of animals and insects. The locomotion of the walking machine is of the discrete type and may be performed using one, two, three, four, six, eight and more legs — pedipulators — to walk, run and jump over a hard surface” [17.3].


Gait Parameter Stable Gait Support Polygon Execution Level Walking Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [17.1]
    Donnes M.D. Control of Walking. Local Control and Real Time Systems. Post Doct. Dissertation. Carnegie Mellon University, 1984.Google Scholar
  2. [17.2]
    Bielecki W. W.: Two-legged locomotion: dynamical modeling and control methods.(in Russian) Moskva, “Nauka” 1984.Google Scholar
  3. [17.3]
    Morecki A., Ekiel. 1, Fidelus K: Cybernetics systems of Limb Movements in Man, Animals and Robots. Polish Scientific Publ.,Warsaw 1984.Google Scholar
  4. [17.4]
    Reibert M.H.: Legged robots. Communication of the ACM, 1986, Vol. 20, No 6, p. 499–514.CrossRefGoogle Scholar
  5. [17.5]
    Todd D.J.: Walking Machines. An introduction to legged robots. Kogan Page, 1985.Google Scholar
  6. [17.6]
    Ochocimski D.E., Golubiev Ju.T.: Miechanika i upravienije dvizenja avtomaticeskovo sagajuscevo apparata. Moskva, “Nauka” 1984.Google Scholar
  7. [17.7]
    Zielinska T: Gait modelling of the 4-legs walking machine. Doct. Diss., Warsaw Univ. of Technology 1986.Google Scholar
  8. [17.8]
    Vukobratovic M: Legged Locomotion and Anthropomorphic Mechanisms. Mihailo Pupin Institute. Belgrad 1975.Google Scholar
  9. [17.9]
    McGhee R.B., Orin D.E.: A mathematical of Joint positions and torques in Legged Locomotion Systems. Proced. Theory and Practice of Robots and Manipulators. Ed. by A. Morecki, K. Kçdzior, PWN — Elsevier Publishing Company, 1977.Google Scholar
  10. [17.10]
    Morecki A. (editor): Basic Problems of Contemporary Technics. Vol. XXV, Robotics. Polish Scientific Publ.,Warsaw 1987 (in Polish).Google Scholar
  11. [17.11]
    Takanishi A., Egusa Y.E., Tochizawa N, Takega T. and Kato I.: Realization of Dynamics Biped Walking Stabilized with Trunk Motion. RoManSy’7.Proc. of the Seventh CISMIFToMM Symposium on Theory and Practice of Robots and Manipulators. Ed. by A.Moreckl, G.Bianchl and K. Jaworek, Hermes, Paris1990.Google Scholar
  12. [17.12]
    Morecki A., Oderfeld J.: Theory of Machines and Mechanisms. Warsaw PWN 1987 (in Polish).Google Scholar
  13. [17.13]
    McGhee R.B. and Orin B.E.: An Interactive computer control system for a quadrupedix robot. First CISM-IFToMM Symposium on Theory and Practice on Robots and Manipulators. Vol. 1, Springer Verlag, 1974.Google Scholar
  14. [17.14]
    Emura T. and, Arakova A.: A Study on Walking Robots Controlled with Attitude Sensors. Advanced Robotics, 1989, Ed. K.J. Waldron, Springer-Verlag 1989.Google Scholar
  15. [17.15]
    Bessonov A.P., Goncharov S.S., Umnov N.V.: Evaluation of the Top Limit Velocity for Walking Robots; RoManSy’7 Proc. of the Seventh CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators. Ed. by A. Morecki, G. Bianchi and K. Jaworek, Hermes, Paris 1990.Google Scholar
  16. [17.16]
    Hirose S, Umetani Y: Some Considerations on a Feasible Walking Mechanism as a terrain Vehicle. Proc. of the 3rd Symposium on Theory and Practice of Robots and Manipulators. Ed. by A.Morecki, G.Bianchi, K. Kçdzior, PWN — Elsevier Scientific Publishing Company, 1980.Google Scholar
  17. [17.17]
    Song Shin Min and Waldron K.J.: Machines that Walk: the Adaptive Suspension Vehicle, The MIT Press, Cambridge, 1989.Google Scholar
  18. [17.18]
    Bessonov A.P., Umnov NV.: Choice of Geometric Parameters of Walking Machines. Proc.. on Theory and Practice of Robots and Manipulators. Edited by A. Morecki, K. K@dzior, PWN - Elsevier Scientific Publ. Company, 1977.Google Scholar
  19. [17.19]
    ThringM W.: Robots and talechirs. Ellis Horwood Lmtd, Publ.-Chichester, 1983.Google Scholar
  20. [17.20]
    Hirose S., Aoki S. and Michyahe J.: Design and Control of Quadro-Truck Crawler Vehicle HELIOS-II. Preprints Eight CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, 2–6 July 1990, CracowGoogle Scholar
  21. [17.21]
    Akizowo J., Iwasaki M, Nemoto T., Asukura O.: Development on Walking Robot for Underwater Inspection. J. Waldron (Ed.). Advanced Robotics. Springer-Verlag.Google Scholar
  22. [17.22]
    Jlg. W., Berns K: A learning architecture based on reinforcement learning for adaptive control of the walking machine LAURON. Robotics and Autonomous Systems, no. 15, pp. 321–334, 1995CrossRefGoogle Scholar
  23. [17.23]
    Ritzman R. E.: The Neural Organization of Cocroatch Escape and its Role in Contex Dependent Orientation. Biological Neural Networks in Inverteberate Neuroethology and Robotics. Edit. R. D. Beer, R. E. Ritzman, T. McKenna, Academic Press Inc. 1993.Google Scholar
  24. [17.24]
    Dean J: A Model of Leg Coordination in the Stick Insect, Carausius morosus. Biological Cybernetics, No 64, s. 393–411, Springer Verlag 1991.Google Scholar
  25. [17.25]
    Dean J.: A Model of Leg Coordination in the Stick Insect, Carausius morosus. Biological Cybernetics, No 66, s. 335–355, Springer Verlag 1992.Google Scholar
  26. [17.26]
    Zielitiska T.: Walking Machine as a Mechatronic Device. Int. J. of Intell. Mechatronics, Design and Production. Vol. 1, No 3, s. 156–170, 1995.Google Scholar
  27. [17.27]
    Bogutsky A. V: Control of Walking Machine on Extra—Complex Terrain. Proc. of European Control Conf.’93, s. 1261–64.Google Scholar
  28. [17.28]
    Probir K. P., Jarayan K: Generation of Free Gait — a Graph Search Approach. IEEE Trans. On Robotics and Automation, Vol. 7, No 3, June 1991, s. 299–305.Google Scholar
  29. [17.29]
    Morecki i in.: Robotics System: Elephant Trunk Type Elastic Manipulator Combined with Quadruped Walking Machine. Proc. of the 2nd Int.Conf. on Robotics and Factories in Future. Springer Verlag 1988.Google Scholar
  30. [17.30]
    Muller-Wilco U. et all: Kinematic Model of a Stick Insect as an Example of a Six—Legged Walking System. Adaptive Behavior, Vol. 1, No 2, s. 155–170, The Massachusets Institute of Technology 1992.Google Scholar
  31. [17.31]
    Halme A. i in.: Terrain Adaptive Motion and Free Gait of a Six Legged Walking Machine. Proc. Euromech’ 307 „Walking Machines“, Duisburg 1993.Google Scholar
  32. [17.32]
    Vukobratovic M: Legged Locomotion Robots and Anthropomorphic Mechanism. Michailo Pupin Institute, Beograd 1976.Google Scholar
  33. [17.33]
    Formalski A.M.: Peremiescenije antropomorfnych miechanismow. Moskwa, „Nauka“ 1982.Google Scholar
  34. [17.34]
    Kato 1.: Bulletin of Sciences and Engineering Research Laboratory. No 62, Waseda Univ, 1973 ( Special Issue of Wabot).Google Scholar
  35. [17.35]
    Kato 1.: Bulletin of Sciences and Engineering Research Laboratory. No 112, Waseda Univ, 1985 (Special Issue of Wabot-2).Google Scholar
  36. [17.36]
    Bay J. S., Hemami H.: Modelling of a Neural Pattern Generator with Coupled Nonlinear Oscillators. IEEE Trans. On Biomedical Engineering, Vol. BME-34, No 4, s. 297–306, 1987.Google Scholar
  37. [17.37]
    Brogan W. L.: Modern Control Theory. 3rd edition, Prentice Hall Inc. 1991.Google Scholar
  38. [17.38]
    Buschman A., Frik M: Nonlinear Pattern Generators for Legged Locomotion. Euromech 307 „Walking Machines“, Duisburg 1993.Google Scholar
  39. [17.39]
    Cohen A.H., Rossignol S., Griller S.: Neural Control of Rhythmic Movements in Vertebrates, J. Eiley and Sons, New York 1988.Google Scholar
  40. [17.40]
    Formalski A.: Impulsive Control for Antropomorphic Biped. RoManSy’ 10, Edited by A. Morecki, G. Bianchi, K. Jaworek, Springer Verlag 1995, s. 387–393.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Adam Morecki
    • 1
  • Józef Knapczyk
    • 2
  1. 1.Warsaw University of TechnologyPoland
  2. 2.Cracow University of TechnologyPoland

Personalised recommendations