Robot Task Planning

  • Adam Morecki
  • Józef Knapczyk
Part of the International Centre for Mechanical Sciences book series (CISM, volume 402)


Robot programming is particularly difficult in the case of complicated tasks requiring complex operations in three-dimensional workspaces where those operations are also coordinated by the information from sensors. And even for relatively simple tasks performed by currently produced industrial robots, the cost involved in their programming can be comparable to the price of the robot itself. Consequently, it is only natural that methods for simplifying robot programming are a priority issue. Treating a robot’s operations only in terms of results on the objects of manipulation seems to be one way of solving this problem. For instance, it is easier for a user to define an operation: “place the pivot in the hole” than specify the sequence of manipulator motions required for achieve that result.


Joint Space Problem Situation Collision Detection Trajectory Planning Elementary Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [12.1]
    Baer A., Eastman C., Henrion M.: Geometric modelling: a survey. Comp. Aided Design, 11, 1979, 75–145.Google Scholar
  2. [12.2]
    Rechiqua A.A.G.: Representations for right solids theory, methods and systems. ACM Comp. Surveys, vol. 12, 4, 1980, 437–464.Google Scholar
  3. [12.3]
    Jackings C.L., Tanimoto S.L.: Oct-trees and their use in representing three-dimensional objects. Comp. Graph. Image Process., 1980, 249–270.Google Scholar
  4. [12.4]
    Meagher D.: Geometric modelling using octtree encoding. Comp. Graph. Image Process., 1982, 129–147.Google Scholar
  5. [12.5]
    Bajcsy R., Solina F.: Sphere packing algorithm for sparce 3-D points. Technic. Report. Univ. Pensylvania, Philadelphia, 1984, 1–16.Google Scholar
  6. [12.6]
    Mohr R., Bajcsy R.: Packing volumes by spheres. IEEE Trans. on Patt. Anal. and Mach. Intell., 1983, 111–116.Google Scholar
  7. [12.7]
    Fangeras 0.0. and all.: Polyhedral approximation of 3-D objects without holes. Comp. Vision, Graph. Image Process., 1984, 169–183.Google Scholar
  8. [12.8]
    Henderson T.: Efficient 3-D objects representations for industrial vision systems. IEEE Trans on Patt. Amal. and Mech. Intell., 1983, 609–618.Google Scholar
  9. [12.9]
    Shirai Y., Suwa N.: Recognition of polyhedra with a range finder. Proc. 2nd IJCAI, 1971, 80–87.Google Scholar
  10. [12.10]
    Zoutendijk C.: Mathematical programming Methods. North Holland, Amsterdam, 1976.Google Scholar
  11. [12.11]
    Gilles I.W. Universal computer program for seeking a collision free path for an industrial robot. Proc. 15-th ISIR, 1985, 935–942.Google Scholar
  12. [12.12]
    Gerke W.: Collision-free and shortest paths for industrial robots found by dynamic programming. Roboter-Systeme, 1985, 42–52.Google Scholar
  13. [12.
    ] Bellmann R.: Dynamische Programmierung and selbstandpassende Regel-processe. R.Oldenbourg Verlag, Munchen, Wien, 1967, (there is a Russian translation as well as the original English version).Google Scholar
  14. [12.14]
    Khatib O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. Journ. Rob. Research. 1986, 90–98.Google Scholar
  15. [12.15]
    Krogh B.N.: A generalized potential field approach to obstacle avoidance control. Proc. Cont. Rob. Res. 1984, MS84–484.Google Scholar
  16. [12.16]
    Ochocimski D.E., Golubiev Y.F.: Mechanika i upravlenye dvizenyem avtomaticeskogo sagayuscego apparata. Nauka, Moskva, 1984.Google Scholar
  17. [12.17]
    Bobrow I.E.: Optimal robot path planning using the minimum-time criterion. IEEE J. Rob. Aut., vol. 4, 1988, 443–450.CrossRefGoogle Scholar
  18. [12.18]
    Gilbert E.G., Johnson D.W.: Distance functions and their application to robot path planning in the presence of obstacles. IEEE J. Rob.Aut.,vol. 1, 1985, 21–30.CrossRefGoogle Scholar
  19. [12.19]
    Elsgolc L.E.: Diffieriencalnye uravnienia i variacionnye iscisleniye. Nauka, Moskva, 1965.Google Scholar
  20. [12.20]
    Findeisen W., Szymanowski J., Wierzbicki A.: Theory and numerical methods for optimization. Polish Sc. pub., Warsaw, 1977 (in Polish).Google Scholar
  21. [12.21]
    Lozano-Perez T.: A simple motion — planning algorithm for general robot manipulators. IEEE J.Rob. Aut., vol. 3, 1987, 224–238.CrossRefGoogle Scholar
  22. [12.22]
    Herman N.: Fast three dimensional, collision free motion planning. Proc. IEEE Conf. Rob. Aut., 1986, 1056–1063.Google Scholar
  23. [12.23]
    Gouzenes L.: Strategies for solving collision-free trajectories problems for mobile and manipulator robots. Int. Journ. Rob. Research, vol. 3, 1984, 51–65.CrossRefGoogle Scholar
  24. [12.24]
    Nilsson N.J.: Principles of artificial intelligence. Tioga, Palo Alto, 1980.MATHGoogle Scholar
  25. [12.25]
    Stoer J.: Introduction to numerical methods. Polish Sc. Pub., Warsaw, 1979 (in Polish).Google Scholar
  26. [12.26]
    Pfeifer F., Rainer J.: A concept for manipulator trajectory planning. IEEE J. Rob. Aut., vol. 3, 1987, 115–123.CrossRefGoogle Scholar
  27. [12.27]
    Pfeifer F.: Manipulator trajectory planning and control. Proc. IFAC Theory of Robots, 1986, 325–330.Google Scholar
  28. [12.28]
    Shin K.G., McKay N.D. Minimum time control of robotic manipulators with geometric path constraints. IEEE Trans. Aut. Contr., vol. 30, 531–541.Google Scholar
  29. [12.29]
    Wong E.K., Fu K.S.: A hierarchical orthogonal space approach to three dimensional path planning. IEEE J. Rob. Aut., vol. 2, 1986, 42–53.CrossRefGoogle Scholar
  30. [12.30]
    Gibson J.J.: The senses considered as percepted Systems. Honghton Mitten co, Boston, 1966.Google Scholar
  31. [12.31]
    Helmholtz H. L.: Handbook of Physiological Optics. JPC Southall,Dover, 1962.Google Scholar
  32. [12.32]
    Roberts L.G.: Machine perception of three-dimensional solids. Optical and Electro-optical Information Processing. MIT Press, 1965.Google Scholar
  33. [12.33]
    Coiftèt P.: Interaction avec L’Environnement. Hermes Publish, 1981.Google Scholar
  34. [12.34]
    Fu K.: Syntactic methods in pattern recognition. Academic Press, 1979.Google Scholar
  35. [12.35]
    Popov E.V., Firdman G.R.: Algoritmiceskv_ e osnovy intieliektualnych robotov i iskustviennogo intielekta. Nauka, Moskva, 1976.Google Scholar
  36. [12.361
    Chang C.L. Lee P.C.: Symbolic logic and mechanical theorem proving. Academic Press, 1973.Google Scholar
  37. [12.37]
    Fu K.S., Gonzales R-C., Lee C.S.G.: Robotics, Control, Sensing, Vision, and Intelligence. McGraw-Hill 1987, Russ. trans. lzd. Mir, Moskwa 1989.Google Scholar
  38. [12.38]
    C.I. Connolly J.B. Burns, R. Weiss.: Path planning using Laplace’s Equation. In Proceedings of the 1990 IEEE International Conference on Robotics and Automation, IEEE, May 1990, 2102–2106.Google Scholar
  39. [12.39]
    Kim I.O., Khosla P.:Real-time obstacle avoidance using harmonic potential functions, IEEE Trans. Rob. And Ant.. vol 8, no. 3, 1992, 338–349.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Adam Morecki
    • 1
  • Józef Knapczyk
    • 2
  1. 1.Warsaw University of TechnologyPoland
  2. 2.Cracow University of TechnologyPoland

Personalised recommendations