Control of Manipulators

  • Adam Morecki
  • Józef Knapczyk
Part of the International Centre for Mechanical Sciences book series (CISM, volume 402)


We describe only a few of the methods used in the field of manipulator control here [11.10]. The function of a control system is, given reference trajectory Q(t), to determine these signals controlling the actuators of the manipulator that allow the manipulator to follow this trajectory. They are usually computed using the information supplied by feedback sensors. A typical control system for manipulator links is illustrated in Figure 11.1, where

Z is the generator, supplying reference configuration signals,

S, the control system (controller),

M, the manipulator,

Q, the actual manipulator configuration,

C, the set of sensors measuring position and generalized velocities, and

E, the difference between the reference configuration and the actual configuration (servo error).


Adaptive Control Manipulator Link Kinematic Pair Adaptive Control System Model Reference Adaptive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [11.1]
    Craig J. J.: Introduction to Robotics. Mechanics and Control. Addison - Wesley Publ. Comp. 1989.Google Scholar
  2. [11.2]
    Wonham W. M.: Linear multivariable control - a geometric approach. New York, Heidelberg, Berlin, Springer - Verlag 1979.CrossRefGoogle Scholar
  3. [11.3]
    Lee C. S. G., Lee B. H.: Resolved motion adaptive control for mechanical manipulators. Trans ASME, Jul of Dyn. Syst., v. 106, 1984, pp. 134–142.zbMATHGoogle Scholar
  4. [11.4]
    Koivo A. J., Guo T M.: Adaptive linear controller for robotic manipulators. IEEE Trans,. Aut. Contr., vol. 28, 1983, pp. 162–171.CrossRefzbMATHGoogle Scholar
  5. [11.5]
    Craig J. J., Hsu l’., Scully S. S.: Adaptive control of mechanical control. Proc. IEEE Cont. Rob. Aut., 1986, pp. 190–195.Google Scholar
  6. [11.6]
    Vukobratovic M., Stokic D., Kircanski N.: Towards to nonadaptive and adaptive control of manipulation robots. IEEE Trans. Aut. Contr., vol. 29, 1984, pp. 841–844.CrossRefzbMATHGoogle Scholar
  7. [11.7]
    Ahdallach C., Dawson I)., Dorato P., Jamishidi M.: Survey of robust control for rigid robots. IEEE Control System Mag., vol. 11, No. 2, 1991, 24–30.CrossRefGoogle Scholar
  8. [11.8]
    Nicosia S., Tomei T.: Model Reference adaptive control algorithms for industrial robots. Automatica, vol. 20, 1984, pp. 635–644.CrossRefzbMATHGoogle Scholar
  9. [11.9]
    Utkin V. I.: Sliding modes and their applications. Moscow: Mir, 1978.Google Scholar
  10. [11.10]
    Sloane J. J, Li W.: Applied nonlinear control. Englewood Cliffs, NY: Prentice Hall, 1991.Google Scholar
  11. [11.11]
    Harashima F., Hashimoto H., Maruyama K.: Practical robust control of robot arm using variable structure system. In Proc. IEEE Rob. and Aut., 1986, pp. 532–539.Google Scholar
  12. [11.12]
    Song Y. D.: Adaptive motion tracking control of robot manipulators-non-regressor based approach. In Proc. IEEE Rob. and Aut., 1994, pp. 3008–3013.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Adam Morecki
    • 1
  • Józef Knapczyk
    • 2
  1. 1.Warsaw University of TechnologyPoland
  2. 2.Cracow University of TechnologyPoland

Personalised recommendations