Skip to main content

Fuzzy Decision Theory Intelligent Ways for Solving Real-World Decision Problems and for Solving Information Costs

  • Chapter
Planning Based on Decision Theory

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 472))

Abstract

Looking at modern theories in management science and business administration, one recognizes that many of these conceptions are based on decision theory in the sense of von Neumann and Morgenstern. However, empirical surveys reveal that the normative decision theory is hardly used in practice to solve real-life problems. This neglect of recognized classical decision concepts may be caused by the fact that the information necessary for modeling a real decision problem is not available, or the cost for getting this information seems too high. Subsequently, decision makers (DM’s) abstain from constructing decision models.

As the fuzzy set theory offers the possibility to model vague data as precise as a person can describes them, a lot of decision models with fuzzy components are proposed in literature since 1965. But in my opinion only fuzzy consequences and fuzzy probabilities are important for practical applications. Therefore, this paper is restricted to these subjects. It is shown that the decision models with fuzzy utilities or/and fuzzy probabilities are suitable for getting realistic models of real world decision situations. Moreover, we propose appropriate instruments for selecting the best alternative and for compiling a ranking of the alternatives. As fuzzy sets are not well ordered, this should be done in form of an interactive solution process, where additional information is gathered in correspondence with the requirements and under consideration of cost—benefit relations. This procedure leads to a reduction of information costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bortolan, G., and Degani, R. (1985). Ranking fuzzy subsets. Fuzzy Sets and Systems 15: 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S.J. and Hwang Ch.-L. (1987). Fuzzy Multiple Attribute Decision Making, Methods and Applications. Berlin, Heidelberg: Springer Verlag.

    Google Scholar 

  • Dubois, D., and Prade, H. (1982). The Use of Fuzzy Numbers in Decision Analysis. In ( Gupta, M.M. and Sanchez, E. Hrsg.), Fuzzy Information and Decision Processes. Amsterdam New York Oxford, 309–321.

    Google Scholar 

  • Dubois, D. and Prade, H. (1983). Ranking of Fuzzy Numbers in the Setting of Possibility Theory. Information Sciences 30: 183–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois, D,. and Prade, H. (1998). Possibilistic logic in decision, In Proceedings of EFDAN’98. 41–49

    Google Scholar 

  • Fandel, G., Francois, P., and Gulatz, K.M: (1994). PPS-Systeme: Grundlagen, Methoden, Software, Marktanalyse. Heidelberg

    Google Scholar 

  • Jain, R. (1976). Decision making in the presence of variables. IEEE, Transactions on Systems, Man and Cybernetics 6: 698–703.

    Article  MATH  Google Scholar 

  • Kivijärvi, H., Korhonen, P., and Wallenius, J. (1986). Operations research and its practice in Finland. Interfaces 16: 53–59.

    Article  Google Scholar 

  • Lai, Y.-J., and Hwang, C.-L. (1992). Fuzzy mathematical programming. Berlin Heidelberg: Springer.

    Book  MATH  Google Scholar 

  • Lilien, G. (1987). MS/OR: A mid-life crises. Interfaces 17: 53–59

    Article  Google Scholar 

  • Menges, G., and Kofler, E. (1976). Entscheidungen bei unvollständiger Information. Berlin Heidelberg: Springer.

    MATH  Google Scholar 

  • Meyer zu Selhausen H. (1989). Repositioning OR’s Products in the Market. Interfaces 19, 79–87

    Article  Google Scholar 

  • Neumann, J.v., and Morgenstern, O. (1953). Theory of games and economic behavior. Princeton.

    Google Scholar 

  • Ramik, J. und Rimanek, J. (1985). Inequality between Fuzzy Numbers and its Use in Fuzzy Optimization. Fuzzy Sets and Systems 16: 123–138.

    Article  MathSciNet  MATH  Google Scholar 

  • Rommelfanger, H. (1984). Entscheidungsmodelle mit Fuzzy-Nutzen. In Operations Research Proceedings 1983, 559–567

    Google Scholar 

  • Rommelfanger H. (1986). Rangordnungsverfahren für unscharfe Mengen. OR-Spektrum 8: 219–228

    Article  MATH  Google Scholar 

  • Rommelfanger H. (1994). Fuzzy Decision Support-Systeme — Entscheiden bei Unschärfe. Berlin, Heidelberg: Springer, 2nd edition.

    Book  Google Scholar 

  • Rommelfanger, H., and Eickemeier, S. (2002). Entscheidungstheorie. Klassische Konzepte und Fuzzy-Erweiterungen. Berlin Heidelberg: Springer.

    Google Scholar 

  • Slowinski, R. (Ed.) (1998). Fuzzy Sets in Decision Analysis, Operations Research and Statistics. Boston: Kluwer.

    MATH  Google Scholar 

  • Sommer, G. (1980). Bayes-Entscheidungen mit unscharfer Problembeschreibung. Frankfurt am Main: Peter Lang

    Google Scholar 

  • Tanaka H., Okuda T., and Asai K. (1976). A Formulation of Fuzzy Decision Problems and its Application to an Investment Problem. Kybernetes 5: 25–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka, H., and Asai, K. (1984). Fuzzy Linear Programming with Fuzzy Numbers. Fuzzy Sets and Systems 13: 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka, H., Ichihashi, H., and Asai, K. (1984). A Formulation of Linear Programming Problems based on Comparison of Fuzzy Numbers. Control and Cybernetics 13: 185–194.

    MathSciNet  MATH  Google Scholar 

  • Tingley, G.A. (1987). Can MS/OR sell itself well enough? Interfaces 17: 41–52.

    Article  MathSciNet  Google Scholar 

  • Watson, S.R., Weiss, J.J., and Donell, M.L. (1979). Fuzzy Decision Analysis. IEEE, Transactions on Systems, Man and Cybernetics 9: 1–9.

    Article  Google Scholar 

  • Whalen, T. (1984). Decision Making under Uncertainty with various Assumptions about available Information. IEEE, Transactions on Systems, Man and Cybernetics 14: 888–900.

    Article  MathSciNet  Google Scholar 

  • Yager, R.R. (1979). Possibilistic Decision Making. IEEE, Transactions on Systems, Man and Cybernetics 9:

    Google Scholar 

  • Zadeh L.A. (1965). Fuzzy Sets. Information and Control 8: 338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann H.J. (1996). Fuzzy Sets Theory and its Applications. Boston: Kluwer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Rommelfanger, H.J. (2003). Fuzzy Decision Theory Intelligent Ways for Solving Real-World Decision Problems and for Solving Information Costs. In: Della Riccia, G., Dubois, D., Kruse, R., Lenz, HJ. (eds) Planning Based on Decision Theory. International Centre for Mechanical Sciences, vol 472. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2530-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2530-4_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-40756-1

  • Online ISBN: 978-3-7091-2530-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics