Advertisement

Numerical Solutions of Initial-Boundary-Value Problems with Shear Strain Localization

  • R. C. Batra
Part of the International Centre for Mechanical Sciences book series (CISM, volume 386)

Abstract

The article summarizes some of the results obtained numerically since 1984 by the author and his colleagues on one (simple shearing), two (plane strain and axisymmetric) and three (twisting of a thin-walled and a thick-walled tube) dimensional adiabatic shear banding problems in thermoviscoplastic materials. The material models considered account for strain and strain rate hardening, thermal softening, dipolar effects with the second order spatial gradients of the velocity field taken as independent kinematic variables and the corresponding higher order stresses as kinetic variables, and the nucleation, growth and coalescence of voids. The effect of phase transformation and the consequent change in the material properties has also been accounted for. Different shapes and types of defects considered include geometric such as the variation in the thickness, rigid inclusions, voids, nonuniform initial conditions, and weak elements. Some of the problems studied where no a priori defect is introduced to nucleate a shear band include the plane strain compression of a FCC single crystal, the Taylor impact test, and the penetration of a tungsten heavy alloy or a depleted uranium rod into a steel target.

Keywords

Shear Band Slip System Adiabatic Shear Band Effective Plastic Strain Plane Strain Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. L. Bai and B. Dodd, Adiabatic Shear Localization: Occurrence, Theories and Applications, Pergamon, Oxford 1992.Google Scholar
  2. 2.
    R. C. Batra, The Initiation and Growth of, and the Interaction Among Adiabatic Shear Bands in Simple and Dipolar Materials, Int. J. Plasticity, 3 (1987), 75.CrossRefGoogle Scholar
  3. 3.
    R. C. Batra, Effect of Nominal Strain-Rate on the Initiation and Growth of Adiabatic Shear Bands in Steels, J. Appl. Mechs., 55 (1988), 229–230.CrossRefGoogle Scholar
  4. 4.
    R. C. Batra, Steady State Penetration of Thermoviscoplastic Targets, Computat. Mech. an Int. J., 3 (1988), 1–11.CrossRefMATHGoogle Scholar
  5. 5.
    R. C. Batra and C. H. Kim, Effect of Material Characteristic Length on the Initiation, Growth and Band Width of Adiabatic Shear Bands in Dipolar Materials, J. de Physique,49 (1988), C3/41-C3/46.Google Scholar
  6. 6.
    R. C. Batra and De-Shin Liu, Adiabatic Shear Banding in Plane Strain Problems, J. Appl. Mechs., 56 (1989), 527–534.CrossRefMATHGoogle Scholar
  7. 7.
    R. C. Batra and C. H. Kim, Adiabatic Shear Banding in Elastic-Viscoplastic Nonpolar and Dipolar Materials, Int. J. Plasticity, 6 (1990), 127–141.CrossRefGoogle Scholar
  8. 8.
    R. C. Batra and C. H. Kim, The Interaction Among Adiabatic Shear Bands in Simple and Dipolar Materials, Int. J. Engng Sci., 28 (1990), 927–942.Google Scholar
  9. 9.
    R. C. Batra and C. H. Kim, Effect of Viscoplastic Flow Rules on the Initiation and Growth of Shear Bands at High Strain Rates, J. Mechs. Phys. Solids, 38 (1990), 859–874.CrossRefGoogle Scholar
  10. 10.
    R. C. Batra and C. H. Kim, Effect of Thermal Conductivity on the Initiation, Growth and Band Width of Adiabatic Shear Bands, Int. J. Engng Sci., 29 (1991), 949–960.CrossRefGoogle Scholar
  11. 11.
    R. C. Batra and K. I. Ko, An Adaptive Mesh Refinement Technique for the Analysis of Shear Bands in Plane Strain Compression of a Thermoviscoplastic Solid, Computational Mechs.: an Int. J., 10 (1992), 369–379.CrossRefMATHGoogle Scholar
  12. 12.
    R. C. Batra and C. H. Kim, Analysis of Shear Bands in Twelve Materials, Int. J. Plasticity, 8 (1992), 425–452.CrossRefGoogle Scholar
  13. 13.
    R. C. Batra and J. Hwang, An Adaptive Mesh Refinement Technique for Two-Dimensional Shear Band Problems, Computat’l Mechs.: an Int. J., 12 (1993), 255–268.CrossRefMATHGoogle Scholar
  14. 14.
    R. C. Batra and K. I. Ko, Analysis of Shear Bands in Dynamic Axisymmetric Compression of a Thermoviscoplastic Cylinder, Int. J. Engng Sci., 31 (1993), 529–547.CrossRefGoogle Scholar
  15. 15.
    R. C. Batra and X. S. Jin, Analysis of Dynamic Shear Bands in Porous Thermally Softening Viscoplastic Materials, Archives of Mechanics, 41 (1994), 13–36.Google Scholar
  16. 16.
    R. C. Batra and J. Hwang, Dynamic Shear Band Development in Dipolar Thermoviscoplastic Materials, Computational Mechs., 12 (1994), 354–369.Google Scholar
  17. 17.
    R. C. Batra and X. Zhang, On the Propagation of a Shear Band in a Steel Tube, J. Eng’g Materials4 Technology, 116 (1994), 155–161.CrossRefGoogle Scholar
  18. 18.
    R. C. Batra and Z. Peng, Development of Shear Bands in Dynamic Plane Strain Compression of Depleted Uranium and Tungsten Blocks, Int. J. Impact Eng’g, 16 (1995), 375–395.CrossRefGoogle Scholar
  19. 19.
    R. C. Batra, X. Zhang and T. W. Wright, Critical Strain Ranking of Twelve Materials in Deformations Involving Adiabatic Shear Bands, J. Appl. Mechs., 62 (1995), 252–255.CrossRefGoogle Scholar
  20. 20.
    R. C. Batra and Z. G. Zhu, Effect of Loading Direction and Initial Imperfections on the Development of Dynamic Shear Bands in a FCC Single Crystal, Acta Mechanica, 113 (1995), 185–203.CrossRefMATHGoogle Scholar
  21. 21.
    R. C. Batra and J. B. Stevens, Adiabatic Shear Bands in Axisymmetric Impact and Penetration Problems, Comp. Meth. Appl. Mechs. e.4 Eng’g (to appear in 1997).Google Scholar
  22. 22.
    R. C. Batra and N. Nechitailo, Analysis of Failure Modes in Impulsively Loaded Prenotched Steel Plates, Int. J. Plasticity, 13 (1997), 291–308.CrossRefMATHGoogle Scholar
  23. 23.
    R. C. Batra and D. Rattazzi, Adiabatic Shear Banding in a Thick-Walled Steel Tube, Comp. Mechs., (to appear, 1997 ).Google Scholar
  24. 24.
    E. B. Becker, G. F. Carey and J. T. Oden, Finite Elements. An Introduction, Vol. I, Prentice Hall, Englewood Cliffs, NJ 1981.Google Scholar
  25. 25.
    T. Belytschko and T. J. R. Hughes (Editors), Computational Methods for Transient Analysis, North-Holland, Amsterdam 1986.Google Scholar
  26. 26.
    S. R. Bodner and Y. Partom, Mechanical Properties at High Rate of Strain, Inst. Phys. Conf., Ser. No. 21 (1975), 102.Google Scholar
  27. 27.
    B. Budiansky, Thermal and Thermoelastic Properties of Isotropic Composites, J. Compos. Mater., 4 (1990), 701–744.Google Scholar
  28. 28.
    S. Cescotto and D. W. Zhou, A Variable Density Mesh Generation for Planar Domains, Comm. Appl. Num. Meth., 5 (1989), 473–481.CrossRefMATHGoogle Scholar
  29. 29.
    Y. W. Chang and R. J. Asaro, An Experimental Study of Shear-Localization in Aluminum-Copper Single Crystals, Acta Metall., 29 (1981), 241.CrossRefGoogle Scholar
  30. 30.
    L. Chen and R. C. Batra, Shear Instability Direction at a Crack Tip in Thermoviscoplastic Materials, Theoretical and Appl. Fracture Mechs. (in press).Google Scholar
  31. 31.
    C. C. Chu and A. Needleman, Void Nucleation Effects in Biaxially Stretched Sheets, J. Engng. Mat. and Technol., 102 (1980), 249–256.CrossRefGoogle Scholar
  32. 32.
    B. Deltort, Experimental and Numerical Aspects of Adiabatic Shear in a 4340 Steel, J. de Physique, C8, 4 (1994), 447–452.Google Scholar
  33. 33.
    R. D. Dick, V. Ramachandran, J. D. Williams, R. W. Armstrong, W. H. Holt and W. Mock, Jr., Dynamic Deformation of W7Ni3Fe Alloy via Reverse-Ballistic Impact, in: A. Crowson and E. S. Chen, eds., Tungsten and Tungsten Alloys — Recent Advances ( The Minerals, Metals Materials Society ) 1991, 269–276.Google Scholar
  34. 34.
    O. D. Dillon, Jr. and J. Kratochvil, A Strain Gradient Theory of Plasticity, Int’ J. Solids and Structures, 6 (1970), 1513–1533.CrossRefMATHGoogle Scholar
  35. 35.
    B. Dodd and Y. Bai, Ductile Fracture and Ductility with Applications to Metal Working, Academic Press, London 1987.Google Scholar
  36. 36.
    J. R. Fisher, Void Nucleation in Spheriodized Steels during Tensile Deformation, Ph.D. Thesis, Brown Univ., 1980.CrossRefGoogle Scholar
  37. 37.
    C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, NJ 1971.MATHGoogle Scholar
  38. 38.
    A. E. Green, B. McInnis and P. M. Naghdi, Elastic-Plastic Continua with Simple Force Dipole, Int. J. Engng. Sci, 1 (1968), 373–394.CrossRefGoogle Scholar
  39. 39.
    A. L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth. Part 1. Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 99 (1977), 2–15.CrossRefGoogle Scholar
  40. 40.
    A. M. Habraken and S. Cescotto, An Automatic Remeshing Technique for Finite Element Simulation of Forming Processes, Int. J. Num. Meth. Eng., 30 (1990), 1503–1525.CrossRefGoogle Scholar
  41. A. C. Hindmarsh, ODEPACK: A Systematized Collection of ODE Solvers. Scientific Computing (R. A. Stepleman et al.,eds.), Scientific Computing,Amsterdam, North Holland 1983, pp. 55–64.Google Scholar
  42. 42.
    E. Hinton and J. S. Campbell, Local and Global Smoothing of Discontinuous Finite Element Functions Using a Least Squares Method, Int. J. Num. Meth. Eng., 8 (1974), 461–480.MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    E. Hinton, T. Rock and O. C. Zienkiewicz, A Note on Mass Lumping and Related Processes in the Finite Element Method, Earthquake Engng. and Structural Dynamics, 4 (1976), 245–249.CrossRefGoogle Scholar
  44. 44.
    T. J. R. Hughes, The Finite Element Method. Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ 1987.MATHGoogle Scholar
  45. 45.
    G. R. Johnson and W. H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proc. 7th Int. Symp. Ballistics, The Hague, The Netherlands 1983, 1–7.Google Scholar
  46. 46.
    J. F. Kalthoff, Shadow Optical Methods of Caustics, in Handbook on Experimental Mechanics, (Editor A. S. Kobayashi) Prentice-Hall, Englewood Cliffs, NJ 1987, 430–500.Google Scholar
  47. 47.
    J. F. Kalthoff and S. Winkler, Failure Mode Transition at High Strain Rates of Loading, Proc. Int. Conf. On Impact Loading and Dynamic Behavior of Materials, (Editors: C. Y. Chiem, H. D. Kunze and L. W. Meyer ), Deutsche Gewsellschaft für Metallkundcle, DGM, Bremen 1988, 185–196.Google Scholar
  48. 48.
    J. F. Kalthoff, Transition in the Failure Behavior of Dynamically Shear Loaded ‘Cracks, Appl. Mech. Rev., 43 (1990), S247.CrossRefGoogle Scholar
  49. 49.
    C. H. Kim and R. C. Batra, Effect of Initial Temperature on the Initiation and Growth of Shear Bands in a Plain Carbon Steel, Int. J. Nonlinear Mechs., 27 (1992), 279–291.CrossRefGoogle Scholar
  50. 50.
    H. Kobayashi and B. Dodd, A Numerical Analysis of the Formation of Adiabatic Shear Bands Including Void Nucelation and Growth, Int. J. Impact Engng., 8 (1989), 1–13.CrossRefGoogle Scholar
  51. 51.
    J. S. Koehler, The Nature of Work-Hardening, Phys. Review, 86 (1952), 51.Google Scholar
  52. 52.
    Y. W. Kwon and R. C. Batra, Effect of Multiple Initial Imperfections on the Initiation and Growth of Adiabatic Shear Bands in Nonpolar and Dipolar Materials, Int. J. Engng Sci., 26 (1988), 1177–1187.CrossRefGoogle Scholar
  53. 53.
    G. H. LeRoy, Large Scale Plastic Deformation and Fracture for Multiaxial Stress States, Ph.D. Thesis, McMaster University 1978.Google Scholar
  54. 54.
    J. Litonski, Plastic Flow of a Tube under Adiabatic Torsion, Bull. Acad. Polon. Sci., 25 (1977), 7.Google Scholar
  55. 55.
    S. H. Lo, A New Mesh Generation Scheme for Arbitrary Planar Domains, Int. J. Num. Meth. Eng., 21 (1985), 1403–1426.CrossRefMATHGoogle Scholar
  56. 56.
    R. Löhner, Some Useful Data Structures for the Generation of Unstructured Grids, Comm. Appl. Num. Meth., 4 (1988), 123–135.CrossRefMATHGoogle Scholar
  57. 57.
    J. H. MacKenzie, The Elastic Constants of a Solid Containing Spherical Holes, Proc. Phys. Soc., 63B (1950), 2–11.CrossRefMATHGoogle Scholar
  58. 58.
    A. Marchand and J. Duffy, An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel, J. Mechs. Phys. Solids, 36 (1988), 251.CrossRefGoogle Scholar
  59. 59.
    H. F. Massey, The Flow of Metal During Forging, Proc. Manchester Assoc. Engrs. (1921), 21–26.Google Scholar
  60. 60.
    R. D. Mindlin, Second Gradient of Strain and Surface Tension in Linear Elasticity, Int. J. Solids and Structures, 1 (1965), 417–438.CrossRefGoogle Scholar
  61. 61.
    A. Needleman and V. Tvergaard, Finite Element Analysis of Localization in Plasticity, in Finite Elements: Special Problems in Solid Mechanics, (J. T. Oden and G. F. Carey, eds. ), Prentice Hall 1984, 94–157.Google Scholar
  62. 62.
    A. Needleman, Material Rate Dependence and Mesh Sensitivity in Localization Problems, Comp. Meth. Appl. Mech. Engng., 67 (1988), 69–85.CrossRefMATHGoogle Scholar
  63. 63.
    J. W. Nunziato and S. C. Cowin, A Nonlinear Thoery of Elastic Materials with. Voids, Arch. Rational Mech. Anal., 72 (1979), 175–201.MathSciNetMATHGoogle Scholar
  64. 64.
    E. Orowan, Dislocation in Metals. American Institute of Mining, Metallurgical and Petroleum Engineers, NY (1954), 103.Google Scholar
  65. 65.
    J. Pan, M. Saje and A. Needleman, Localization of Deformation in Rate-Sensitive Porous Plastic Solids, Int. J. Fract., 21 (1983), 261–278.CrossRefGoogle Scholar
  66. 66.
    J. Pan and J. R. Rice, Rate Sensitivity of Plastic Flow and Implication for Yield Surface Vertices, Int. J. Solids and Structures, 19 (1983), 973–987.CrossRefMATHGoogle Scholar
  67. 67.
    S. L. Passman and R. C. Batra, A Thermomechanical Theory for a Porous Anisotropic Elastic Solid with Inclusions, Arch. Rat. Mech. Anal., 87 (1984), 11–33.MathSciNetMATHGoogle Scholar
  68. 68.
    J. Peraire, M. Vandati, K. Morgan and O. C. Zienkiewicz, Adaptive Remeshing for Compressible Flow Computations, J. Comp. Phys., 72 (1987), 449–466.CrossRefMATHGoogle Scholar
  69. 69.
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge 1986.Google Scholar
  70. 70.
    R. J. Price and A. Kelly, Deformation of Age-hardened Aluminum Alloy Crystals - II. Acta Metall., 12 (1964), 979.CrossRefGoogle Scholar
  71. 71.
    A. M. Rajendran, High Strain Rate Behavior of Metals, Ceramics and Concrete, Report #WL-TR-92–4006, Wright Patterson Air Force Base 1992.Google Scholar
  72. 72.
    S. Saimoto, W. F. Hosford and W. A. Backofen, Ductile Fracture in Copper Single Crystals, Phil. Mag., 12 (1965), 319.CrossRefGoogle Scholar
  73. 73.
    M. Saje, J. Pan and A. Needleman, Void Nucleation Effects on Shear Localization in Porous Plastic Solids, Int. J. Fracture, 19 (1982), 163–182.CrossRefGoogle Scholar
  74. 74.
    J. Sawkill and R. W. K. Honeycombe, Strain-Hardening in Face Centered Cubic Metal Crystals, Acta Metall., 2 (1954), 854.CrossRefGoogle Scholar
  75. 75.
    T. J. Shawki and R. J. Clifton, Shear Band Formation in Thermal Viscoplastic Materials, Mechanics of Materials, 8 (1989), 13–43.CrossRefGoogle Scholar
  76. 76.
    J. B. Stevens and R. C. Batra, Adiabatic Shear Bands in the Taylor Impact Test for a WHA Rod, Int. J. Plasticity (to appear in 1998).Google Scholar
  77. 77.
    G. I. Taylor, Plastic Strains in Metals, J. Inst. Metals, 62 (1938), 307–324.Google Scholar
  78. 78.
    G. I. Taylor, The Use of Flat-Ended Projectiles for Determining Dynamic Yield Stress 1. Theoretical Considerations, Proc. Roy. Soc., A194 (1948), 289–299.CrossRefGoogle Scholar
  79. 79.
    Y. Tomita, Simulations of Plastic Instabilities in Solid Mechanics, Appl. Mechs. Revs., 47 (1994), 171–205.CrossRefGoogle Scholar
  80. 80.
    R. A. Toupin, Elastic Materials with Couple Stresses, Arch. Rat’l Mechs. Anal., 11 (1962), 385–414.MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    H. Tresca, On Further Application of the Flow of Solids, Proc. Inst. Mech. Engrs., 30 (1878), 301–345.CrossRefGoogle Scholar
  82. 82.
    C. A. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, in: S. Flügge, ed.: Handbuch der Physik, Vol. 111/3, Springer-Verlag, Berlin 1965.Google Scholar
  83. 83.
    V. Tvergaard, Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions, Int. J. Fracture, 17 (1981), 389–407.CrossRefGoogle Scholar
  84. 84.
    V. Tvergaard, On Localization in Ductile Materials Containing Spherical Voids, Int. J. Fracture, 128 (1982), 237–252.Google Scholar
  85. 85.
    V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 32 (1984), 157–196.CrossRefGoogle Scholar
  86. 86.
    J. W. Walter, Numerical Experiments on Adiabatic Shear Band Formation in One-Dimension, Int. J. Plasticity, 8 (1992), 657–693.CrossRefGoogle Scholar
  87. 87.
    Y. Wang and R. C. Batra, Effect of Kinematic Hardening on the Initiation and Growth of Shear Bands in Plane Strain Compression of a Thermoviscoplastic Solid, Acta Mechanica, 102 (1994), 217–233.CrossRefMATHGoogle Scholar
  88. 88.
    G. J. Weng, Dislocation Theories of Work Hardening and Yield Surfaces of Single Crystal, Acta Mechanica, 37 (1980), 217–230.MathSciNetCrossRefMATHGoogle Scholar
  89. 89.
    T. W. Wright and R. C. Batra, The Initiation and Growth of Adiabatic Shear Bands, Int. J. Plasticity, 1 (1985), 205–212.CrossRefGoogle Scholar
  90. 90.
    T. W. Wright and R. C. Batra, Adiabatic Shear Bands in Simple and Dipolar Plastic Materials. In: K. Kawata and J. Shiori, (eds.) Macro-and Micro Mechanics of High Velocity Deformation and Fracture, IUTAM Symp. on MMMHVDF, Tokyo, Japan, Springer-Verlag, Berlin, Heidelberg 1987, 189–201.Google Scholar
  91. 91.
    T. W. Wright and J. W. Walter, On Stress Collapse in Adiabatic Shear Bands, J. Mech. Phys. Solids, 35 (1987), 701–715.CrossRefGoogle Scholar
  92. 92.
    T. W. Wright and J. W. Walter, The Asymptotic Structure of an Adiabatic Shear Band in Antiplane Motion, J. Mech. Phys. Solids, 44 (1996), 77–97.MathSciNetCrossRefMATHGoogle Scholar
  93. 93.
    C. Zener and J. H. Hollomon, Effect of Strain Rate on Plastic Flow of Steel, J. Appl. Phys., 14 (1944), 22–32.CrossRefGoogle Scholar
  94. 94.
    M. Zhou, A. Needleman and R. J. Clifton, Finite Element Simulations of Plate Impact, J. Mech. Phys. Solids, 42 (1994), 423–458.CrossRefMATHGoogle Scholar
  95. 95.
    M. Zhou, G. Ravichandran and A. J. Rosakis, Dynamically Propagating Shear Bands in Impact-Loaded Prenotched Plates-II. Numerical Simulations, J. Mechs. Phys. Solids, 44 (1996) 1007–1032.CrossRefGoogle Scholar
  96. 96.
    J. Z. Zhu, O. C. Zienkiewicz, O. Hinton and J. Wu, A New Approach to the Development of Automatic Quadrilateral Mesh Generation, Int. J. Num. Meth. Eng., 32 (1991), 849–886.CrossRefMATHGoogle Scholar
  97. 97.
    Z. G. Zhu and R. C. Batra, Consideration of Phase Transformations in the Study of Shear Bands in a Dynamically Loaded Steel Block, J. Eng’g Mat’l Tech., 114 (1992), 368–377.CrossRefGoogle Scholar
  98. 98.
    Z. G. Zhu and R. C. Batra, Analysis of Dynamic Shear Bands in a Single Crystal, Int. J. Plasticity, 9 (1993), 653–696.CrossRefGoogle Scholar
  99. 99.
    O. C. Zienkiewicz and J. Z. Zhu, The Superconvergent Patch Recovery and a Posteriori Error Estimates, Part I, II, Int. J. Numer. Meth. Engng., 33 (1992), 1331–1382.MathSciNetCrossRefMATHGoogle Scholar
  100. 100.
    M. A. Zikry and S. Nemat-Nasser, High Strain-Rate Localization and Failure of Crystalline Materials, Mechs. Materials, 10 (1990), 215–237.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • R. C. Batra
    • 1
  1. 1.Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations