Skip to main content

Structural and Mechanical Aspects of Homogeneous and Non-Homogeneous Deformation in Solids

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 386))

Abstract

The aim of this work is to provide a basic experimental information about the physical nature of plastic deformation of crystalline bodies and to show the analytical workshop within which discreet micro-structural events of the plastic flow and the accompanying effects may be accounted for. The attention is focused upon the slip which is a dominating micro-structural mechanism of deformation. The criterion for slip in the slip system is shown and discussed in terms of the effect of geometrical constraints upon the stress state and the choice of the operating system. The experimental patterns of slip during homogeneous and localised deformation are analysed in terms of the evolution of slip intrinsic features and the feedback between the mechanical, geometrical and structural aspects of slip in crystal. The analysis of the evolution of slip in crystals is supplemented by an essential information about the mechanism of slip and properties of dislocations. Interactions between dislocations of different slip systems are analysed from the point of view of the mechanisms of the strain hardening (formation of thé obstacles network) and the softening mechanisms. The correlation between slip intrinsic features and global mechanical performance of crystals is made. It is shown that the change from a stable into an unstable mode of plastic flow is caused by the change of slip from a “fine slip” into a “coarse slip” in single crystals and into shear bands in polycrystals. The latter is shown to take the origin in the mechanical instability of the obstacles network. The factors controlling the evolution of slip and responsible mechanisms are discussed in terms of the slip geometry and interactions between dislocations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Korbel, L. Blaz, H. Dybiec, J. Gryziecki, J. Zasadzinski, „Structure and behaviour of copper and a-brass during plastic deformation“, Metals Technology, 391–397 (1979)

    Google Scholar 

  2. H. Tresca, „Sur l’ecoulement des corps solide soumis a de fortes pressions“, C. R. Acad. Sci. Paris, 59,754 ( 1864 I I )

    Google Scholar 

  3. K. T. Huber, „Wlasciwa praca odksztalcenia jako miara wytçzenia materialu“, Czasopismo Techniczne, Lw6w, 22, 38–81 (1904)

    Google Scholar 

  4. R. Von Mises, „Mechanik der festen Korper im plastisch-deformablen Zustand“’ Gottinger Nachtrichten, Mathematik und Physik, 582 (1913)

    Google Scholar 

  5. K. Piela, A. Korbel, „Necking during the high-temperature deformation of zinc single crystals“, Stregth of Materials, 7-th Japan Institute of Metals Symposium (HMIS 7) on „ Aspects of high temperature deformations and fracture in crystalline Material”, Nagoya-1993, 91 (1993)

    Google Scholar 

  6. A. Korbel, M. Szczerba, „ Selfinduced change of the deformation path in Cu-Al single crystals“, Rev. Phys. Appl., 23, 706 (1988).

    Article  Google Scholar 

  7. B. Mikulowski, Metallurgy and Foundry Practice, „Strain hardening of zinc monocrystals with additions of silver and galium“, Bulleting of Academy of Mining and Metallurgy - Dissertations, Krakow, 96, (1982)

    Google Scholar 

  8. W. Bochniak, A. Korbel, S. Wierzbinski, „The Nature of Dynamic Recrystallization in Single and Polycrystalline FCC Metals“’ Recrystallisation’90”, T. Chandra (Ed. ), TMS, Warrendale, 780 (1990)

    Google Scholar 

  9. A. Considere, „Memoire sur l’emploi du fer et de l’acier dans les constructions“, Ann des Ponts et Chaussees, 9, 574 (1885)

    Google Scholar 

  10. V. S. Anathan, E. O. Hall, „Microscopic shear bands at Luders fronts in mild steel“, Scripta Metall., 21, 519 (1987)

    Article  Google Scholar 

  11. W. Bochniak, „The microstructure of Luders band in Cu-Sn2 alloy“, Scrita Metall., 23, 519 (1989)

    Article  Google Scholar 

  12. B. J. Brindley, P. J. Worthington, „Yield-point phenomena in substitutional alloys“, Metallurgical Review, 145, 101 (1970)

    Article  Google Scholar 

  13. J. J. Jonas, C.M. Selars, J. Mc G. Tegart, „Strength and structure under hot-working conditions“, Rev. Met., 14, 1 (1969)

    Article  Google Scholar 

  14. S. Wierzbinski, A. Korbel, J. J. Jonas, „Structural and mechanical aspects of high temperature deformation of polycrystalline nickel“, Materials Science and Technology, 8, 153–158 (1992).

    Article  Google Scholar 

  15. A. Korbel, L. Blaz, „The strain localization during the hot deformation of copper“, Scripta Metall., 14, 829 (1980)

    Article  Google Scholar 

  16. A. Korbel, H. Dybiec, „The problem of the negative strain-rate sensitivity under the Portevin-LeChatelier deformation conditions“, Acta Metall., 29, 89 (1981)

    Article  Google Scholar 

  17. A. Korbel, V. S. Raghunathan, D. Teirlinck, W. Spitzig, O. Richmond, J. D. Embury, „A structural study of the influence of pressure on shear band formation“,Acta Metall., 32, 511–512 (1984).

    Article  Google Scholar 

  18. A. H. Cottrell, R. J. Stokes, „ Effect of temperature on the plastic properties of aluminium crystals“, Proc. R.y. Soc., A233, 17 (1955).

    Article  Google Scholar 

  19. A. Wusatowska-Sarnek, A. Korbel, „Low temperature work softening in Cu and C-Al single crystals oriented for single slip“,Strength of Materials, Oikawa (Eds),The Japan Institute of Metal, 275 (1994).

    Google Scholar 

  20. Z. S. Basinski, S. J. Basinski, „Plastic deformation and work hardening“, Dislocations in Solids, v. 4, F. R. N. Nabarro (Ed. ) North Holland Publ. Comp. (1979)

    Google Scholar 

  21. A. Korbel, P. Martin, „Microstructural events of macroscopic strain localization in prestrained tensile specimen“, Acta Metall., 36, 2575–2586 (1988).

    Article  Google Scholar 

  22. K. Piela, A. Korbel, „The effect of shear banding on spatial arrangement of the second phase particles in aluminum alloy“, Materials Science Forum, 217–222, 1037–1042 (1996)

    Article  Google Scholar 

  23. A. Korbel, „Mechanical instability of metal substructure - Catastrophic plastic flow in single and polycrystals, Advanced in Crystal Plasticity, Eds D S Wilkinson, J. D. Embury, 43–83 (1992).

    Google Scholar 

  24. E. Schmid, W. Boas, Kristallpastizitat mit besonderer Berucksichtigung mit Metalle, Springer-Verlag (1935)

    Google Scholar 

  25. G. J. Taylor, „ Plastic Strain in Metals“, Inst. Metals, 62, 218 (1938)

    Google Scholar 

  26. J. F. W. Bishop, R. Hill, „A theoretical derivation of the plastic properties of a polycrystalline face-centered metals“, Phil. Mag., 43, 414 (1951)

    MathSciNet  Google Scholar 

  27. J. I. Frenkel, „Zur Theorie der Elastizitatsgrenze und der kristallinischer Korper“, Z. Phys., 37, 572 (1926)

    Article  MATH  Google Scholar 

  28. E. Z. Orovan, „ Zur Kristallplastizitat. Uber den Mechanismus des Gleitnorganges“, Z. Phys., 89, 605 (1934)

    Article  Google Scholar 

  29. M. Z. Polanyi, „ Uber eine Art Gilterstorung die einen Kristall plastisch machen konnte“, Z. Phys., 89, 660 (1934)

    Article  Google Scholar 

  30. G. J. Taylor, „The mechanism of plastic deformation of crystals, Part I- Theoretical“, Proc. Roy. Soc. A145, 362 (1934)

    Article  MATH  Google Scholar 

  31. G. J. Taylor, „The mechanism of plastic deformation of crystals, Part II- -Comparision with observations“, Proc. Roy. Soc. A145, 388 (1934)

    Article  MATH  Google Scholar 

  32. F. C. Frank, Disc. Far. Soc., „The influence of dislocations on crystal growth“, 5, 48 (1949)

    Google Scholar 

  33. J. Friedel, Dislocations, Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  34. F. R. N. Nabarro, Theory of Crystal Dislocations, Oxford University Press (1967)

    Google Scholar 

  35. J. P. Hirth, J. Lothe, Theory of Dislocations, McGrow-Hill Book Comp. (1968)

    Google Scholar 

  36. H. Neuhauser, „Slip-line formation and collective dislocation motion“, Dislocations in Solids, F. R. N. Nabarro (Eds), North Holland Publ. Comp., Amsterdam 6, 319 (1983)

    Google Scholar 

  37. T. H. Blewit, R. R. Coltman, J. K. Redman, cited in [2–0].

    Google Scholar 

  38. H. Rebstock, „ Kombinierte Zug - und Torsionsverformung von KupferEinkristallrohren“ Zeit. f. Metallkunde, 48, 206 (1957)

    Google Scholar 

  39. S. Mader, H. Seeger, „Untersuchung des Gleitlinienbildes kubbisch-flachenzentriertr Einkristalle“, Acta Metall., 8, 513 (1960)

    Article  Google Scholar 

  40. M. Masima, G. Sachs, „ Mechanische Eigenschaften von Messingkristallen“’ Zeit. f. Physik, 50, 161 (1928)

    Article  MATH  Google Scholar 

  41. V. Goler, G. Sachs, „Zugversuche an Kristallen aus Kupfer und a-Messing“, Zeit. F Physik, 55, 581 (1929)

    Article  Google Scholar 

  42. G. Sachs, J. Weerts, „Zugversuche an Gold - Silberkristallen“, Zeit. f. Physik, 60, 473 (1930)

    Google Scholar 

  43. H. W. Paxton, A. H. Cottrell, „Work -hardening in streched and twisted aluminium crystals“, Acta Metall., 2, 3 (1954)

    Article  Google Scholar 

  44. Z. S. Basinski, P. J. Jackson, „ Instability of Work Hardened State I- Slip in Extraenously Deformed Crystals“,Phys. Stat. Sol., 9, 805 (1967)

    Article  Google Scholar 

  45. Z. S. Basinski, P. J. Jackson, Z. S. Basinski, P. J. Jackson, „ Instability of Work Hardened State II - Slip in Alien Dislocation Distribution“,Phys. Stat. Sol., 10, 45 (1965)

    Article  Google Scholar 

  46. Y. Nakada, A. S. Keh, „Latent hardening in iron crystals“, Acta Metall., 14, 961 (1966)

    Article  Google Scholar 

  47. E. J. H. Wessels, P. J. Jackson, „Latent Hardening in copper-aluminium alloys“, Acta Metall., 17, 241 (1969)

    Article  Google Scholar 

  48. P. Franciosi, M. Berveiller, A. Zaoui, „ Latent hardening in copper and aluminium crystals“, Acta Metall., 28, 273 (1980)

    Article  Google Scholar 

  49. A. Kelly, G. W. Groves, Crystallography and Crystal Defects, London Group Ltd., London, 1970

    Google Scholar 

  50. Z. S. Basinski, M. Szczerba, D. J. Embury, „ Tensile instability in face-centered cubic materials“, Phil. Mag., in press

    Google Scholar 

  51. J. W. Sharp, M. J. Mkin, „Slip behavior in copper crystals previously deformed on another slip system“,Can. Jour. Phys., 22, 519 (1967)

    Article  Google Scholar 

  52. J. H. Wessels, F. R. N. Nabarro, „The hardening of latent glide systems in single crystals of copper-aluminium alloys“, Acta Metall., 19, 903 (1987)

    Article  Google Scholar 

  53. M. Szczerba, A. Korbel, „ Strain Softening and instability of plastic flow in Cu-Al single crystals“, Acta Metall., 35, 1129 (1986)

    Article  Google Scholar 

  54. M. Szczerba, not published data

    Google Scholar 

  55. P. J. Jackson, Z. S. Basinski, „The effect of extraneous deformation on strain hardening in Cu single crystals“, Appl. Phys. Letters, 6, 148 (1964)

    Google Scholar 

  56. A. Korbel, P. Martin, „ Microscopic versus macroscopic aspect of shear bands deformation“, Acta Metall., 34, 1905 (1986)

    Article  Google Scholar 

  57. A. Korbel, „Perspectives of the control of mechanical performance of metals during forming operations“ Jour. Materials Processing Technology 34, 41 (1992)

    Article  Google Scholar 

  58. A. Korbel, W. Bochniak, Jour. Materials Processing Technology, 53, 229 (1995)

    Article  Google Scholar 

  59. A. Dziadon, „The Role of Strain Localization in the Dynamic Strain Ageing Phenomenon of Polycrystalline Alpha Titanium“, Metallurgy and Foundry Practice, Scientific Bulletings of the Academy of Mining and Metallurgy, Bulletin 146, Krakow (1993)

    Google Scholar 

  60. W. Bochniak, „Organization of Slip and the Portevin-LeChatelier Effect in Alpha-Brass“’ Proc. 4th European Conference on Advanced Materials and Processes, Padua-Venice, 265 (1995)

    Google Scholar 

  61. A. Korbel, F. Dobrzanski, M. Richert, „Strain hardening of aluminium at high strains“, Acta Metall., 31, 293 (1983)

    Article  Google Scholar 

  62. W. Oliferuk, A. Korbel, M. Grabski, „Mode of deformation and the rate of energy storage during uniaxial tensile deformation of austenitic steel“, Materials Science and Engineering A220, 123 (1996)

    Article  Google Scholar 

  63. A. Korbel, „The model of microshear banding in metals“, Scirpta Metall. and Materialia, 24, 1229 (1990)

    Article  Google Scholar 

  64. A. Pawełek, A. Korbel, „Soliton-like behaviour of moving dislocation group“, Phil. Mag., B, 61, 829 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Korbel, A. (1998). Structural and Mechanical Aspects of Homogeneous and Non-Homogeneous Deformation in Solids. In: Perzyna, P. (eds) Localization and Fracture Phenomena in Inelastic Solids. International Centre for Mechanical Sciences, vol 386. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2528-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2528-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82918-9

  • Online ISBN: 978-3-7091-2528-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics