Structural and Mechanical Aspects of Homogeneous and Non-Homogeneous Deformation in Solids

  • A. Korbel
Part of the International Centre for Mechanical Sciences book series (CISM, volume 386)


The aim of this work is to provide a basic experimental information about the physical nature of plastic deformation of crystalline bodies and to show the analytical workshop within which discreet micro-structural events of the plastic flow and the accompanying effects may be accounted for. The attention is focused upon the slip which is a dominating micro-structural mechanism of deformation. The criterion for slip in the slip system is shown and discussed in terms of the effect of geometrical constraints upon the stress state and the choice of the operating system. The experimental patterns of slip during homogeneous and localised deformation are analysed in terms of the evolution of slip intrinsic features and the feedback between the mechanical, geometrical and structural aspects of slip in crystal. The analysis of the evolution of slip in crystals is supplemented by an essential information about the mechanism of slip and properties of dislocations. Interactions between dislocations of different slip systems are analysed from the point of view of the mechanisms of the strain hardening (formation of thé obstacles network) and the softening mechanisms. The correlation between slip intrinsic features and global mechanical performance of crystals is made. It is shown that the change from a stable into an unstable mode of plastic flow is caused by the change of slip from a “fine slip” into a “coarse slip” in single crystals and into shear bands in polycrystals. The latter is shown to take the origin in the mechanical instability of the obstacles network. The factors controlling the evolution of slip and responsible mechanisms are discussed in terms of the slip geometry and interactions between dislocations.


Shear Band Slip System Burger Vector Slip Plane Slip Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Korbel, L. Blaz, H. Dybiec, J. Gryziecki, J. Zasadzinski, „Structure and behaviour of copper and a-brass during plastic deformation“, Metals Technology, 391–397 (1979)Google Scholar
  2. 2.
    H. Tresca, „Sur l’ecoulement des corps solide soumis a de fortes pressions“, C. R. Acad. Sci. Paris, 59,754 ( 1864 I I )Google Scholar
  3. 3.
    K. T. Huber, „Wlasciwa praca odksztalcenia jako miara wytçzenia materialu“, Czasopismo Techniczne, Lw6w, 22, 38–81 (1904)Google Scholar
  4. 4.
    R. Von Mises, „Mechanik der festen Korper im plastisch-deformablen Zustand“’ Gottinger Nachtrichten, Mathematik und Physik, 582 (1913)Google Scholar
  5. 5.
    K. Piela, A. Korbel, „Necking during the high-temperature deformation of zinc single crystals“, Stregth of Materials, 7-th Japan Institute of Metals Symposium (HMIS 7) on „ Aspects of high temperature deformations and fracture in crystalline Material”, Nagoya-1993, 91 (1993)Google Scholar
  6. 6.
    A. Korbel, M. Szczerba, „ Selfinduced change of the deformation path in Cu-Al single crystals“, Rev. Phys. Appl., 23, 706 (1988).CrossRefGoogle Scholar
  7. 7.
    B. Mikulowski, Metallurgy and Foundry Practice, „Strain hardening of zinc monocrystals with additions of silver and galium“, Bulleting of Academy of Mining and Metallurgy - Dissertations, Krakow, 96, (1982)Google Scholar
  8. 8.
    W. Bochniak, A. Korbel, S. Wierzbinski, „The Nature of Dynamic Recrystallization in Single and Polycrystalline FCC Metals“’ Recrystallisation’90”, T. Chandra (Ed. ), TMS, Warrendale, 780 (1990)Google Scholar
  9. 9.
    A. Considere, „Memoire sur l’emploi du fer et de l’acier dans les constructions“, Ann des Ponts et Chaussees, 9, 574 (1885)Google Scholar
  10. 10.
    V. S. Anathan, E. O. Hall, „Microscopic shear bands at Luders fronts in mild steel“, Scripta Metall., 21, 519 (1987)CrossRefGoogle Scholar
  11. 11.
    W. Bochniak, „The microstructure of Luders band in Cu-Sn2 alloy“, Scrita Metall., 23, 519 (1989)CrossRefGoogle Scholar
  12. 12.
    B. J. Brindley, P. J. Worthington, „Yield-point phenomena in substitutional alloys“, Metallurgical Review, 145, 101 (1970)CrossRefGoogle Scholar
  13. 13.
    J. J. Jonas, C.M. Selars, J. Mc G. Tegart, „Strength and structure under hot-working conditions“, Rev. Met., 14, 1 (1969)CrossRefGoogle Scholar
  14. 14.
    S. Wierzbinski, A. Korbel, J. J. Jonas, „Structural and mechanical aspects of high temperature deformation of polycrystalline nickel“, Materials Science and Technology, 8, 153–158 (1992).CrossRefGoogle Scholar
  15. 15.
    A. Korbel, L. Blaz, „The strain localization during the hot deformation of copper“, Scripta Metall., 14, 829 (1980)CrossRefGoogle Scholar
  16. 16.
    A. Korbel, H. Dybiec, „The problem of the negative strain-rate sensitivity under the Portevin-LeChatelier deformation conditions“, Acta Metall., 29, 89 (1981)CrossRefGoogle Scholar
  17. 17.
    A. Korbel, V. S. Raghunathan, D. Teirlinck, W. Spitzig, O. Richmond, J. D. Embury, „A structural study of the influence of pressure on shear band formation“,Acta Metall., 32, 511–512 (1984).CrossRefGoogle Scholar
  18. 18.
    A. H. Cottrell, R. J. Stokes, „ Effect of temperature on the plastic properties of aluminium crystals“, Proc. R.y. Soc., A233, 17 (1955).CrossRefGoogle Scholar
  19. 19.
    A. Wusatowska-Sarnek, A. Korbel, „Low temperature work softening in Cu and C-Al single crystals oriented for single slip“,Strength of Materials, Oikawa (Eds),The Japan Institute of Metal, 275 (1994).Google Scholar
  20. 20.
    Z. S. Basinski, S. J. Basinski, „Plastic deformation and work hardening“, Dislocations in Solids, v. 4, F. R. N. Nabarro (Ed. ) North Holland Publ. Comp. (1979)Google Scholar
  21. 21.
    A. Korbel, P. Martin, „Microstructural events of macroscopic strain localization in prestrained tensile specimen“, Acta Metall., 36, 2575–2586 (1988).CrossRefGoogle Scholar
  22. 22.
    K. Piela, A. Korbel, „The effect of shear banding on spatial arrangement of the second phase particles in aluminum alloy“, Materials Science Forum, 217–222, 1037–1042 (1996)CrossRefGoogle Scholar
  23. 23.
    A. Korbel, „Mechanical instability of metal substructure - Catastrophic plastic flow in single and polycrystals, Advanced in Crystal Plasticity, Eds D S Wilkinson, J. D. Embury, 43–83 (1992).Google Scholar
  24. 24.
    E. Schmid, W. Boas, Kristallpastizitat mit besonderer Berucksichtigung mit Metalle, Springer-Verlag (1935)Google Scholar
  25. 25.
    G. J. Taylor, „ Plastic Strain in Metals“, Inst. Metals, 62, 218 (1938)Google Scholar
  26. 26.
    J. F. W. Bishop, R. Hill, „A theoretical derivation of the plastic properties of a polycrystalline face-centered metals“, Phil. Mag., 43, 414 (1951)MathSciNetGoogle Scholar
  27. 27.
    J. I. Frenkel, „Zur Theorie der Elastizitatsgrenze und der kristallinischer Korper“, Z. Phys., 37, 572 (1926)CrossRefMATHGoogle Scholar
  28. 28.
    E. Z. Orovan, „ Zur Kristallplastizitat. Uber den Mechanismus des Gleitnorganges“, Z. Phys., 89, 605 (1934)CrossRefGoogle Scholar
  29. 29.
    M. Z. Polanyi, „ Uber eine Art Gilterstorung die einen Kristall plastisch machen konnte“, Z. Phys., 89, 660 (1934)CrossRefGoogle Scholar
  30. 30.
    G. J. Taylor, „The mechanism of plastic deformation of crystals, Part I- Theoretical“, Proc. Roy. Soc. A145, 362 (1934)CrossRefMATHGoogle Scholar
  31. 31.
    G. J. Taylor, „The mechanism of plastic deformation of crystals, Part II- -Comparision with observations“, Proc. Roy. Soc. A145, 388 (1934)CrossRefMATHGoogle Scholar
  32. 32.
    F. C. Frank, Disc. Far. Soc., „The influence of dislocations on crystal growth“, 5, 48 (1949)Google Scholar
  33. 33.
    J. Friedel, Dislocations, Pergamon Press, Oxford (1964)MATHGoogle Scholar
  34. 34.
    F. R. N. Nabarro, Theory of Crystal Dislocations, Oxford University Press (1967)Google Scholar
  35. 35.
    J. P. Hirth, J. Lothe, Theory of Dislocations, McGrow-Hill Book Comp. (1968)Google Scholar
  36. 36.
    H. Neuhauser, „Slip-line formation and collective dislocation motion“, Dislocations in Solids, F. R. N. Nabarro (Eds), North Holland Publ. Comp., Amsterdam 6, 319 (1983)Google Scholar
  37. 37.
    T. H. Blewit, R. R. Coltman, J. K. Redman, cited in [2–0].Google Scholar
  38. 38.
    H. Rebstock, „ Kombinierte Zug - und Torsionsverformung von KupferEinkristallrohren“ Zeit. f. Metallkunde, 48, 206 (1957)Google Scholar
  39. 39.
    S. Mader, H. Seeger, „Untersuchung des Gleitlinienbildes kubbisch-flachenzentriertr Einkristalle“, Acta Metall., 8, 513 (1960)CrossRefGoogle Scholar
  40. 40.
    M. Masima, G. Sachs, „ Mechanische Eigenschaften von Messingkristallen“’ Zeit. f. Physik, 50, 161 (1928)CrossRefMATHGoogle Scholar
  41. 41.
    V. Goler, G. Sachs, „Zugversuche an Kristallen aus Kupfer und a-Messing“, Zeit. F Physik, 55, 581 (1929)CrossRefGoogle Scholar
  42. 42.
    G. Sachs, J. Weerts, „Zugversuche an Gold - Silberkristallen“, Zeit. f. Physik, 60, 473 (1930)Google Scholar
  43. 43.
    H. W. Paxton, A. H. Cottrell, „Work -hardening in streched and twisted aluminium crystals“, Acta Metall., 2, 3 (1954)CrossRefGoogle Scholar
  44. 44.
    Z. S. Basinski, P. J. Jackson, „ Instability of Work Hardened State I- Slip in Extraenously Deformed Crystals“,Phys. Stat. Sol., 9, 805 (1967)CrossRefGoogle Scholar
  45. 45.
    Z. S. Basinski, P. J. Jackson, Z. S. Basinski, P. J. Jackson, „ Instability of Work Hardened State II - Slip in Alien Dislocation Distribution“,Phys. Stat. Sol., 10, 45 (1965)CrossRefGoogle Scholar
  46. 46.
    Y. Nakada, A. S. Keh, „Latent hardening in iron crystals“, Acta Metall., 14, 961 (1966)CrossRefGoogle Scholar
  47. 47.
    E. J. H. Wessels, P. J. Jackson, „Latent Hardening in copper-aluminium alloys“, Acta Metall., 17, 241 (1969)CrossRefGoogle Scholar
  48. 48.
    P. Franciosi, M. Berveiller, A. Zaoui, „ Latent hardening in copper and aluminium crystals“, Acta Metall., 28, 273 (1980)CrossRefGoogle Scholar
  49. 49.
    A. Kelly, G. W. Groves, Crystallography and Crystal Defects, London Group Ltd., London, 1970Google Scholar
  50. 50.
    Z. S. Basinski, M. Szczerba, D. J. Embury, „ Tensile instability in face-centered cubic materials“, Phil. Mag., in pressGoogle Scholar
  51. 51.
    J. W. Sharp, M. J. Mkin, „Slip behavior in copper crystals previously deformed on another slip system“,Can. Jour. Phys., 22, 519 (1967)CrossRefGoogle Scholar
  52. 52.
    J. H. Wessels, F. R. N. Nabarro, „The hardening of latent glide systems in single crystals of copper-aluminium alloys“, Acta Metall., 19, 903 (1987)CrossRefGoogle Scholar
  53. 53.
    M. Szczerba, A. Korbel, „ Strain Softening and instability of plastic flow in Cu-Al single crystals“, Acta Metall., 35, 1129 (1986)CrossRefGoogle Scholar
  54. 54.
    M. Szczerba, not published dataGoogle Scholar
  55. 55.
    P. J. Jackson, Z. S. Basinski, „The effect of extraneous deformation on strain hardening in Cu single crystals“, Appl. Phys. Letters, 6, 148 (1964)Google Scholar
  56. 56.
    A. Korbel, P. Martin, „ Microscopic versus macroscopic aspect of shear bands deformation“, Acta Metall., 34, 1905 (1986)CrossRefGoogle Scholar
  57. 57.
    A. Korbel, „Perspectives of the control of mechanical performance of metals during forming operations“ Jour. Materials Processing Technology 34, 41 (1992)CrossRefGoogle Scholar
  58. 58.
    A. Korbel, W. Bochniak, Jour. Materials Processing Technology, 53, 229 (1995)CrossRefGoogle Scholar
  59. 59.
    A. Dziadon, „The Role of Strain Localization in the Dynamic Strain Ageing Phenomenon of Polycrystalline Alpha Titanium“, Metallurgy and Foundry Practice, Scientific Bulletings of the Academy of Mining and Metallurgy, Bulletin 146, Krakow (1993)Google Scholar
  60. 60.
    W. Bochniak, „Organization of Slip and the Portevin-LeChatelier Effect in Alpha-Brass“’ Proc. 4th European Conference on Advanced Materials and Processes, Padua-Venice, 265 (1995)Google Scholar
  61. 61.
    A. Korbel, F. Dobrzanski, M. Richert, „Strain hardening of aluminium at high strains“, Acta Metall., 31, 293 (1983)CrossRefGoogle Scholar
  62. 62.
    W. Oliferuk, A. Korbel, M. Grabski, „Mode of deformation and the rate of energy storage during uniaxial tensile deformation of austenitic steel“, Materials Science and Engineering A220, 123 (1996)CrossRefGoogle Scholar
  63. 63.
    A. Korbel, „The model of microshear banding in metals“, Scirpta Metall. and Materialia, 24, 1229 (1990)CrossRefGoogle Scholar
  64. 64.
    A. Pawełek, A. Korbel, „Soliton-like behaviour of moving dislocation group“, Phil. Mag., B, 61, 829 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • A. Korbel
    • 1
  1. 1.Academy of Mining and MetallurgyCracowPoland

Personalised recommendations