Examples of Strain Localisation

  • H. P. Stüwe
Part of the International Centre for Mechanical Sciences book series (CISM, volume 386)


On the atomic scale plastic strain is always localised in the form of discrete dislocations. The concept of homogeneous plastic strain has meaning only on a macroscopic or perhaps on a mesoscopic level. This chapter treats strain localisation on a macroscopic level for specimens deformed in tension and in torsion, on a mesoscopic level for ductile fracture and on an atomistic level for fracture in fatigue.


Fatigue Crack Crack Growth Rate Strain Localisation Torsion Test Mesoscopic Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stüwe, H.P., H.O. Asbeck: Instabilitäten im Zug-und Verdrehversuch, Arch. Eisenhüttenw. 40 (1969) 125–130Google Scholar
  2. 2.
    Considère, M.: Die Anwendung von Eisen und Stahl bei Konstruktionen, Gerold-Verlag, Wien (1888)Google Scholar
  3. 3.
    Schmid, E., W. Boas: Kristallplastizität, Springer, Berlin (1935)Google Scholar
  4. 4.
    Toth, L.S., P. Gilormini, J.J. Jonas: Effect of rate sensitivity on the stability of torsion textures, Acta Met., 36 (1988) 3077–3091CrossRefGoogle Scholar
  5. 5.
    van Houtte, P., E. Aernoudt: Solution of the generalised Taylor theory of plastic flow, Z. Metallk., 66 (1975) 202–209Google Scholar
  6. 6.
    Stüwe, H.P., O. Kolednik: Shape instability of thin cylinders, Acta Met. 36 (1988) 1705–1708CrossRefGoogle Scholar
  7. 7.
    Stüwe, H.P., H. Turck: Zur Messung von Fließkurven im Torsionsversuch, Z. Metallk. 55 (1964) 699–703Google Scholar
  8. 8.
    Witzel, W.: Torsionsverformung von Metallen — Bewegung von Verformungsfronten bei den Aluminiumlegierungen AlCuMgPb und AICu3, Inst. f. d. wissenschaftl. Film, Göttingen, Film Nr. E 1899Google Scholar
  9. 9.
    Stüwe, H.P.: The work necessary to form a ductile fracture surface, Engng Fract. Mech. 13 (1980) 231–236Google Scholar
  10. 10.
    Stüwe, H.P.: The plastic work spent in ductile fracture, threedimensional constitutive equations and ductile fracture, Ed. S. Nemat-Nasser, North Holland Publishing Comp. (1981) 213–221Google Scholar
  11. 11.
    Kolednik, O., H.P. Stüwe: Abschätzung der Rißzähigkeit eines duktilen Werkstoffes aus der Gestalt der Bruchfläche, Z. Metallk. 73 (1982) 219–223Google Scholar
  12. 12.
    Kolednik O.: Ein Beitrag zur Stereophotogrammetrie am Rasterelektronenmikroskop, Prakt. Metallographie 18 (1981) 562–573Google Scholar
  13. 13.
    Kolednik, O.: Stereogrammetrische Untersuchungen des Rißwachstums bei duktilen Materialien, Gefüge und Bruch, Eds. K.L. Maurer und M. Pohl, Gebr. Borntraeger, Berlin—Stuttgart (1990) 193–198Google Scholar
  14. 14.
    Stampfl, J. S. Scherer, M. Gruber, O. Kolednik: Reconstruction of surface topographies by scanning electron microscopy for application in fracture research, Appl. Physics A63 (1996) 341–346Google Scholar
  15. 15.
    Stampfl, J., S. Scherer, M. Berchthaler, M. Gruber, O. Kolednik: Determination of the fracture toughness by automatic image processing, International J. of Fracture 78 (1996) 35–44CrossRefGoogle Scholar
  16. 16.
    Serdyuk, V.A., N.M. Grinberg: The plastic zone and growth of fatigue crack in Magnesium MAl2 alloy at room and low temperatures, Int. J. Fatigue 5 (1983) 79–85CrossRefGoogle Scholar
  17. 17.
    Davidson, D.L., J. Lankford: Fatigue crack growth in metals and alloys: mechanisms and micromechanisms, International material reviews 37 (1992) 45–76Google Scholar
  18. 18.
    Rice, J.R.: Mechanics of crack tip deformation and extension by fatigue, Fatigue Crack Propagation, ASTM STP 415, Am. Soc. Testing Mats. (1967) 247–311Google Scholar
  19. 19.
    Riemelmoser, F.O., R. Pippan: Investigation of a growing fatigue crack by means of a discrete dislocation model, Materials Science and Engineering A234–236 (1997) 135–137Google Scholar
  20. 20.
    Riemelmoser, F.O., R. Pippan, H.P. Stüwe: An argument for a cycle by cycle propagation of fatigue cracks at small stress intensity ranges, Acta Mat., submitted 1997Google Scholar
  21. 21.
    see Nabarro, F.R.N.: Theory of crystal dislocations, Eds. M.F. Mott, E.C. Bullard, D.H. Wilkinson, Oxford University Press, London (1967)Google Scholar
  22. 22.
    Estrin, Y. L.P. Kubin: Plastic instabilities: phenomenology and theory, Materials Science and Engineering, A 137 (1991) 125–134Google Scholar
  23. 23.
    Hart, E.W.: Theory of the tensile test, Acta Met. 15 (1967) 351–355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • H. P. Stüwe
    • 1
  1. 1.Erich-Schmidt Institute for the Physics of Rigid BodiesLeobenAustria

Personalised recommendations