Advertisement

Elastoplastic and Viscoplastic Constitutive Models for Granular Materials

  • Z. Mróz
Part of the International Centre for Mechanical Sciences book series (CISM, volume 385)

Abstract

The present work is aimed at discussing constitutive relations for soils and the hardening rules which follow from extensions of the classical plasticity theory. When viscous effects are neglected this theory results in constitutive equations between stress and strain increments (or rates) with instanteneous stiffness or compliance matrices being dependent on actual stress or strain states and the previous deformation history. It is also important that this theory allows for distinction between loading and unloading or reverse loading events for which different incremental relations are valid.

Keywords

Granular Material Void Ratio Yield Surface Stress Path Conjugate Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Atkinson and P. L. Bransby, The Mechanics of Soils. An Introduction to Critical State Soil Mechanics, McGraw-Hill Publ. Co., 1979.Google Scholar
  2. 2.
    M. I. Baron and I. Nelson, “Application of variable moduli models to the soil behaviour”, Int. J. Solids Struct., 7, 389–417, 1971.Google Scholar
  3. 3.
    Z. P. Bazant, “Endochronic inelasticity and incremental plasticity”, int. J. Sol. Struct., 14, 691–714, 1978.CrossRefGoogle Scholar
  4. 4.
    Z. P. Bazant and S. Kim, Plastic-fracturing theory for concrete, J. Eng. Mech. Div., ASCE, 105, No EM 3, 407–428, 1979.Google Scholar
  5. 5.
    P. M. Byrne and T. L. Eldridge, A three parameter dilatant elastic stress-strain model for sand, Proc. Int. Symp. On Numerical Models in Geomechanics, pp. 73–80, Zurich, 1982.Google Scholar
  6. 6.
    F. Darve, M. Boulon, and R. Chambon, Loi rheologique incrementale des sols, J. De Mecanique, 17, 679–716, 1978.MATHGoogle Scholar
  7. 7.
    C. S. Desai, A general basis for yield, failure and potential functions in plasticity, Int. J. Num. Anal. Meth. Geom., 4, 361–375, 1980.CrossRefMATHGoogle Scholar
  8. 8.
    C. S. Desai and H. J. Siriwardane, A concept of correction functions to account for non-associative characteristics of geologia media, Int. J. Num. Anal. Meth. In Geom., 4, 377–387, 1980.Google Scholar
  9. 9.
    E. A. Dickin and G. J. W. King, The behavoiur of hyperbolic stress-strain models in triaxial and plane-strain compression, Proc. Intern. Symp. On Numerical Models in Geomechanics, pp. 303–311, A. A. Balkema Publ., Zurich, 1982.Google Scholar
  10. 10.
    P. K. Banerjee and A. S. Stipho, Associated and non-associated constitutive relations for undrained behaviour of isotropic soft clays, Int. J. Anal. Meth. Geom., 2, 35–56, 1978.CrossRefGoogle Scholar
  11. 11.
    Y. F. Dafalias and E. P. Popov, Plastic internal variables formalism of cyclic plasticity, ASME J. Appl. Mech., 98, 645–650, 1976.CrossRefGoogle Scholar
  12. 12.
    Y. F. Dafalias and L. R. Herrman, A bounding surface soil plasticity model, Proc. Int. Symp. Soils Under Cyclic and Transient Loading (Eds. G. N. Pande and O. C. Zienkiewicz), pp. 335–345 A. A. Balkema Publ.,, 1980Google Scholar
  13. 13.
    Y. F. Dafalias and L. R. Herrmann, Bounding surface formulation of soil plasticity, in Soil Mechanics-Transient and Cyclic Loads (Ed. G. N. Pande and O. C. Zienkiewicz).Google Scholar
  14. 14.
    D. C. Drucker and W. Prager, Soil mechanics and plastic analysis or limit design, Quart. Appl. Math., 10, 157–165, 1952.MATHMathSciNetGoogle Scholar
  15. 15.
    D. C. Drucker, R. E. Gibson, and D. J. Henkel, Soil mechanics and work-hardening theories of plasticity, Trans. ASCE, 122, 338–346, 1957.Google Scholar
  16. 16.
    R. O. Davis and G. Mullenger, A rate type constitutive model for soil with a critical state, Int. J. Num. Anal. Meth. Geom., 2, 255–283, 1978.CrossRefMATHGoogle Scholar
  17. 17.
    J. M. Duncan and C. Y. Chang, Non-linear analysis of stress and strain in soils, J. Soil Mech. Found, Div. ASCE, 96, No. SM 5, 1629–1651, 1970.Google Scholar
  18. 18.
    G. Gudehus, Elastdplastische Stoffgleichung fur trockener Sand, Ing. Arch., 42, 1973.Google Scholar
  19. 19.
    K. Hashiguchi, Constitutive equations of granular media with an anisotropic hardening, Third Int. Conf. Num. Meth. Geom., Aachen, Germany, 4, 1979.Google Scholar
  20. 20.
    K. Hashiguchi, Constitutive equations of elasto-plastic materials with elastic-plastic transition, ASME J. Appl. Mech., 47, 266–272, 1980.CrossRefMATHGoogle Scholar
  21. 21.
    T. Hueckel and R. Nova, Some hysteric effects of the behaviour of geologic media, Int. J. Solids Struct., 15, 625–642, 1979.CrossRefMATHGoogle Scholar
  22. 22.
    R. L. Kondner and I. S. Zelasko, Hyberbolic stress-strain response: cohesive soils, J. Soils Mech. Found. Div. ASME, 89, No. SM 1, 115–143, 1963.Google Scholar
  23. 23.
    R. L. Kondner and I. S. Zelasko, A hyberbolic stress-strain formulation for sands, Proc. 2”d Pan-Am. Conf. Soil Mech. Found. Eng. Brazil, 1, 289–324,1963Google Scholar
  24. 24.
    W. D. Iwan, On a class of models for the yielding behaviour of continuous and composite systems, J. Appl. Mech. 34, 612–617, 1967.CrossRefGoogle Scholar
  25. 25.
    R. D. Krieg, A practical two-surface plasticity theory, J. Appl. Mech. Trans. ASME, E 42, 97, 641–646, 1975.CrossRefGoogle Scholar
  26. 26.
    P. V. Lade and J. M. Duncan, Elastic stress-strain theory for cohesion-less sil, J. Geotechn. Eng. Div. ASCE, 101, No. GT 10, 1037–1053, 1975.Google Scholar
  27. 27.
    P. V. Lade, Elastoplastic stress-strain theory for cohesion-less soil with curved yield surfaces, Int. J. Solids and Structures, 13, 1019–1035, 1975.CrossRefGoogle Scholar
  28. 28.
    Z. Mrôz, On forms of constitutive laws for elastic-plastic solids, Arch. Mech. Stos., 18, 335, 1966.Google Scholar
  29. 29.
    Z. Mrôz, On hypoelasticity and plasticity approaches to constitutive modelling of inelastic behaviour of soils, Int. J. Num. Anal. Meth. Geom., 4, 45–55, 1980.CrossRefMATHGoogle Scholar
  30. 30.
    Z. Mrôz, On the description of anisotropic work-hardening, J. Mech. Phys. Solids, 15, 163175, 1967.Google Scholar
  31. 31.
    Z. Mrôz, V. A. Norris, and O. C. Zienkiewicz, An anisotropic hardening model for soils and its application to cyclic loading, Int. J. Num. Anal. Meth. Geom., 2, 203–221, 1978.CrossRefMATHGoogle Scholar
  32. 32.
    Z. Mrôz, V. A. Norris, and O. C. Zienkiewicz, Application of an anisotropic hardening model in the analysis of elastoplastic deformation of soils, Geotechnique, 29, 1–34, 1979.CrossRefGoogle Scholar
  33. 33.
    Z. Mrôz, V. A. Norris, and O. C. Zienkiewicz, An anisotropic critical state model for soils subject to cyclic loading, Geotechnique, 31, 451–469, 1981.CrossRefGoogle Scholar
  34. 34.
    Z. Mróz and V. A. Norris, Elastoplastic and viscoplastic constitutive models for soils with application to cyclic loading, in Soil Mechanics-Transient and Cyclic Loads (Ed. G. N. Pande and O. C. Zienkiewicz), Chapter 8, pp. 173–217, J. Wiley and Sons, 1982.Google Scholar
  35. 35.
    Z. Mróz and S. Pietruszczak, A constitutive model for sand with anisotropic hardening rule, Int. J. Num. Anal. Math. Geom., 7, 19–38, 1983.CrossRefMATHGoogle Scholar
  36. 36.
    R. Nova and D. M. Wood, A constitutive model for sand in triaxial compression, Int. J. Num. Anal. Meth. Geom., 3, 255–278, 1979.CrossRefGoogle Scholar
  37. 37.
    S. Pietruszczak and Z. Mróz, On hardening anisotropy of KO-consolidated clays, Int. J. Num. Anal. Meth. Geom., 7, 19–38, 1983.CrossRefMATHGoogle Scholar
  38. 38.
    S. Pietruszczak and Z. Mróz, Description of anisotropic consolidation of clays, Proc. Symp. CRNS, Comportement Mecanique des Solides Anisotropes, pp. 399–623, Noordhoff Sc. Publ., 1982.Google Scholar
  39. 39.
    S. Pietruszczak and Z. Mróz, Finite element analysis of deformation of strain softening materials, Int. J. Num. Meth. Eng., 17, 327–334, 1981.CrossRefMATHGoogle Scholar
  40. 40.
    J. H. Prevost, Mathematical modelling of monotonic and cyclic undrained clay behaviour, Int. J. Num. Anal. Meth. Geom., 1, 195–216, 1977.CrossRefMATHGoogle Scholar
  41. 41.
    J. H. Prevost, Plasticity theory for soil stress-strain behavoiour, J. Eng. Mech. Div. ASCE, 104, No. EMS, 1177–1194, 1978.Google Scholar
  42. 42.
    J. H. Prevost and K. Hoeg, Effective stress-strain strength model for soils, Proc. ASCE, 101, GT 3, 259–278, 1975.Google Scholar
  43. 43.
    G. Pande and S. Pietruszczak, A sideways look at numerical models of soils, Univ. Coll. Swansea, Civ. Eng. Dep. Report C/R/433/82, Dec. 1992.Google Scholar
  44. 44.
    M. Romano, A continuum theory for granular media with a critical state, Arch. Mech. Stos., 26, 1011–1028, 1974.MATHGoogle Scholar
  45. 45.
    D. A. Kolymbas, A rate-dependent constitutive equation for soils, Mech. Res. Comm., 4, 367–372, 1977.Google Scholar
  46. 46.
    I. S. Sandler, On the uniqueness and stability of endochronic theories of material behaviour, Trans. ASME, J. Appl. Mech., 45, 263–266, 1978.CrossRefGoogle Scholar
  47. 47.
    R. S. Rivlin, Some comments on the endochronic theory of plasticity, Int. J. Sol. Struct., 1981.Google Scholar
  48. 48.
    K. C. Valanis and H. E. Read, A new endochronic plasticity model for soils, in Soil Mechanics- Transient and Cyclic Loads (Eds. G. N. Pande and O. C. Zienkiewicz), pp. 375–417, 1982, John Wiley and Sons.Google Scholar
  49. 49.
    H. Di Benedetto and F. Darve, Comparaison de lois rheologiques en cinematique rotationelle, J. de Mec. Theor. Appl. 1983.Google Scholar
  50. 50.
    A. N. Schofield and P. Wroth, Critical State Soil Mechanics, McGraw-Hill, 1968.Google Scholar
  51. 51.
    P. Wilde, Two invariant depending models of granular media, Arch. Mech. Stos., 29, 199–209, 1977.Google Scholar
  52. 52.
    S. Nemat-Nasser and A. Shokooh, On finite plastic flows of compressible materials with internal friction, Int. J. Sol. Struct., 16, 495–514, 1980.CrossRefMATHGoogle Scholar
  53. 53.
    A. Skempton and V. A. Sowa, The behaviour of saturated clays during sampling and testing, Geotechnique, 13, 269–280, 1963.CrossRefGoogle Scholar
  54. 54.
    K. Ishihara and S. Okada, Yielding of overconsolidated sand and liquefaction model under cyclic stress, Soils and Found., 18, 57–72, 1978.CrossRefGoogle Scholar
  55. 55.
    R. H. Boyce. Symp. Soils Under Cyclic and Transient Loading, Ed. G. N. Pande and O. C. Zienkiewicz, J. Wiley, 1982.Google Scholar
  56. 56.
    F. L. Di Maggio and S. Sandler, Material model for granular soils, J. Eng. Mech. Div., Proc. ASCE, 935–940, 1971.Google Scholar
  57. 57.
    H. Petersson and E. P. Popov, Constitutive relations for generalized loadings, Proc. ASCE, 103, EM 611–627, 1977.Google Scholar
  58. 58.
    Z. Mrôz and P. Rodzik, On the control of deformation process by plastic strain, Int. J. Plasticity, 11, 827–842, 1995.CrossRefMATHGoogle Scholar
  59. 59.
    M. Klisifiski, Z. Mrôz and K. Runnesson, Structure of constitutive equations in plasticity for different choices of state and control variables, Int. J. Plasticity, 8, 221–243, 1992.CrossRefGoogle Scholar
  60. 60.
    A. Drescher, B. Birgisson and K. Shak, A model of water saturated loose sand, Proc. V-th Int. Symp. Num. Models Geomech., NUMOG-V, Ed. G. N. Pande and St. Pietruszczak, 109–112, Balkema.Google Scholar
  61. 61.
    A. Jarzçbowski and Z. Mrôz, A constitutive model for sands and its application to monotonic and cyclic loading, Proc. Int. Symp. Constitutive Equations for Granular Non-cohesive Soils, Ed. A. Saada and G. Bianchini, Balkema, 307–323, 1988.Google Scholar
  62. 62.
    D. M. Wood, K. Belkheir and D. F. Liu, Strain softening and state parameter for sand modelling, Geotechnique, 44, 235–239, 1994.Google Scholar
  63. 63.
    J. A. Sladen and J. M. Oswell, The behaviour of very lose sand in the triaxial compression test, Canadian Geotechn. J., 26, 103–113, 1989.CrossRefGoogle Scholar
  64. 64.
    K. Ishihara, Liquefaction and flow failure during earthquakes, Geotechnique, 43, 351–415, 1993.CrossRefGoogle Scholar
  65. 65.
    P. V. Lade, Static instability and liquefaction of loose fine sandy slopes, J. Geotech. Eng., ASCE, 118, 51–71, 1992.CrossRefGoogle Scholar
  66. 66.
    A. Drescher and Z. Mrôz, A refined constitutive model for superior sand, Proc. NUMOGVI, Ed. St. Pietruszczak and G. N. Pande, 21–26, A. A. Balkema, 1997.Google Scholar
  67. 67.
    J. P. Bardet, A bounding surface model for sands, J. Eng. Mech. ASCE, 1198–1217, 1986.Google Scholar
  68. 68.
    C. Di Prisco, R. Nova and J. Lanier, A mixed isotropic-kinematic hardening constitutive law for sand, Modern Approaches to Plasticity, Ed. D. Kolymbas, Elsevier Sci. Publ., 83–124, 1993.Google Scholar
  69. 69.
    M. Pastor, O. C. Zienkiewicz and K. H. Leung, Simple model for transient soil loading in earthquake analysis, Int. J. Num. Meth. Geomech., 9, 477–498, 1985.CrossRefMATHGoogle Scholar
  70. 70.
    B. Cambou and K. Jafari, A constitutive model for granular materials based on two plasticity mechanisms, Proc. Int. Symp. Constitutive Equations for Granular and Non-cohesive Soils, Eds. A. Saada, G. Bianchini, Balkema, 149–167, 1988.Google Scholar
  71. 71.
    A. Drescher and R. L. Michalowski, Density variation in pseudo-steady plastic flow of granular media. Geotechnique, 34, 1–10, 1984.CrossRefGoogle Scholar
  72. 72.
    M. A. Goodman and S. C. Cowin, Two problems in the gravity flow of granular materials. J. Fluid Materials, 45, 321–339, 1971.MATHGoogle Scholar
  73. 73.
    M. A. Goodman and S. C. Cowin,.,A continuum theory for granular materials. Arch. Rat. Mech. Anal., 44, 249–266, 1972.MATHMathSciNetGoogle Scholar
  74. 74.
    A. Goldstein and M. Shapiro, Mechanics of collisional motion of granular materials, Part I. General hydrodynamic equations, J. Fluid Mech., 282, 75–114, 1995.CrossRefMathSciNetGoogle Scholar
  75. 75.
    J. T. Jenkins and S. B. Savage, A theory for the rapid flow of identical, smooth nearly elastic, circular disk. J. Fluid Mech., 171, 53–69, 1983.CrossRefGoogle Scholar
  76. 76.
    H. K. Kytomaa. and D. Prasad, Transition from quasistatic to rate dependent shearing of concentrated suspensions. Powders and Grounds 93, Proc. 2-nd In Conf Micromechanics of Granular Media, (Ed. C. Thorton and A. A. Balkema, 281–287, 1993.Google Scholar
  77. 77.
    C. K. K. Lun, S. B. Savage., D. J. Jeffrey. and N. Chepurny, Kinetic theories for granular flow: inelastic particles in Couette flow and sligh, J. Fluid Mech., 1984.Google Scholar
  78. 78.
    R. C. Yalamanchili, R. Gudha and K. R. Rajagopal, Flow of granular materials in a vertical channel under the action of gravity. Powder Technology, 81, 65–73, 1994.CrossRefGoogle Scholar
  79. 79.
    R. L. Michalowski, Strain localisation and periodic fluctuations in granular flow processes from hoppers. Geotechnique, 40, 389–403, 1990.CrossRefGoogle Scholar
  80. 80.
    Z. Mrôz and O. C. Zienkiewicz, Uniform formulation of constitutive models for clays and sands. In Constitutive Equations for Engineering Materials, (Ed. C. S. Desai, and R. Gallagher). J. Wiley, 1984.Google Scholar
  81. 81.
    Z. Mrôz and A. Jarzabowski, Phenomenological model of contact slip. Acta Mech. 102, 59–72, 1994.CrossRefMATHMathSciNetGoogle Scholar
  82. 82.
    Z. Mrôz and J. Maciejewski, Post-critical response of soils and shear band evolution. In Localisation Phenomena in Geomaterials (Ed. R. Chambon et al. ). Balkema, 1994.Google Scholar
  83. 83.
    J. W. Rudnicki and J. R. Rice, Conditions for the localisation of deformation in pressure-sensitive dilatant-materials. J. Mech. Phys. Solids, 23, 371–394, 1975.CrossRefGoogle Scholar
  84. 84.
    S. B. Savage and S. Mc Keown, Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders. J. Fluid Mech., 127, 453–472, 1983.CrossRefGoogle Scholar
  85. 85.
    O. C. Zienkiewicz and Z. Mrôz, Generalized plasticity formulation and application to geomechanics. In Mechanics of Engineering Materials, (Ed. C. S. Desai, and R. Gallagher). J. Wiley 655–680, 1984.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Z. Mróz
    • 1
  1. 1.Institute of Fundamental Technological ResearchWarsawPoland

Personalised recommendations