Advertisement

Hypoplasticity: A Framework to Model Granular Materials

  • D. Kolymbas
  • I. Herle
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 385)

Abstract

To solve a series of problems, engineers are interested in the mechanical behaviour of materials (and geomaterials are, probably, the most fascinating materials). What are our approaches to detect the mechanical behaviour of materials? We approach by observation, experiments and theories. Constitutive models are theories. A common opinion is that experiments are of primary importance. As soon as the experimental results are available, the formulation of an appropriate theory is straightforward. Another common opinion is that constitutive theories (models) are only valuable to feed sophisticated FEM-codes. Both opinions are not completely true and are, thus, misleading. It is very important to realize that a theory (besides serving as a tool for better FEM-simulations) helps to understand nature. C. H. Darwin said that ‘All observation must be for or against some view, if it is to be of any service’. Besides of this, we have to recognize that experiments are burdened with a series of errors.

Keywords

Constitutive Equation Constitutive Model Granular Material Void Ratio Yield Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Bauer. Constitutive Modelling of Critical States in Hypoplasticity. Proceedings of the Fifth International Symposium on Numerical Models in Geomechanics, NUMOG V, Davos, Switzerland, Balkema, 15–20, 1995.Google Scholar
  2. [2]
    E. Bauer. Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations, 36 (1): 13–26, 1996.CrossRefGoogle Scholar
  3. [3]
    E. Bauer And W. Wu. A hypoplastic model for granular soils under cyclic loading. In D. Kolymbas, editor, Modern Approaches to Plasticity, pages 247–258. Elsevier, 1993.Google Scholar
  4. [4]
    E. Bauer and W. Wu. A hypoplastic constitutive model for cohesive powders. Powder Technology, 85: 1–9, 1995.CrossRefGoogle Scholar
  5. [5]
    R. Chambon. Une classe de lois de comportement incrementalement non lineaire pour les sols non visqueux, resolution de quelques problemes de coherence. C. R. Acad. Sci. Paris t. 3087 serie II,p: 1571–1576 (1989).Google Scholar
  6. [6]
    Y.F. Dafalias. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. J. Eng. Mech. ASCE, Vol. 112, 966–987, 1986.CrossRefGoogle Scholar
  7. [7]
    F. Dahlhaus. Stochastische Untersuchungen von Silobeanspruchungen. Schriftenreihe des Institutes fütir Massivbau und Baustofftechnologie der Universität Fridericiana Karlsruhe, Heft 25, 1995.Google Scholar
  8. [8]
    R.O. Davis, G. Mullenger. A rate-type constitutive model for soil with a critical state. International Journal of Numerical and Analytical Methods in Geomechanics, Vol. 2, 255–282, 1978.CrossRefMATHGoogle Scholar
  9. [9]
    J. Desrues, R. Chambon. A new rate type Constitutive Model for Geomaterials: C1oE. In: D. Kolymbas (ed) Modern Approaches to Plasticity, Elsevier, 1993.Google Scholar
  10. [10]
    C. di Prisco, S. Imposimato. Time dependent mechanical behaviour of loose sand. Mech. of Cohesive-Frictional Materials and Structures, Vol. 1, 45–73, 1996.CrossRefGoogle Scholar
  11. [11]
    H.J. Feise. Modellierung des mechanischen Verhaltens von Schüttgütern. Veröffentlichung 23, Dissertation, Mechanik-Zentrum der Technischen Universität Carolo-Wilhelmina in Braunschweig, 1996.Google Scholar
  12. [12]
    G. Gudehus. A comparison of some constitutive laws for soils under radially symmetric loading and unloading. Proc. 3th Int. Conf. Num. Meth. Geom., Aachen, ed. Balkema, 1979.Google Scholar
  13. [13]
    G. Gudehus. A comprehensive constitutive equation for granular materials. Soils and Foundations, 36 (1): 1–12, 1996.CrossRefGoogle Scholar
  14. [14]
    G. Gudehus, D. Kolymbas. Numerical testing of constitutive relations for soils. Proc. 5th Int. Conf Num. Meth. Geomech., Nagoya, 1985.Google Scholar
  15. [15]
    M.E. Gurtin, K. Spear. On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Structures, Vol. 19, No. 5, pp. 437–444 (1983).CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    I. Herle. Hypoplastizität und Granulometrie von Korngerüsten. Publ. Series of Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, No. 142, 1997.Google Scholar
  17. [17]
    I. Herle, J. Tejchman. Effect of grain size and pressure level on bearing capacity of footings on sand. Int. Symp. on Deformation and Progressive Failure in Geomechanics, Nagoya, 1997.Google Scholar
  18. [18]
    H.M. Hügel. Prognose von Bodenverformungen. Publ. Series of Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, No. 136, 1995.Google Scholar
  19. [19]
    D. Kolymbas. A rate-dependent constitutive equation for soils. Mech. Res. Comm., 4: 367–372, 1977.CrossRefGoogle Scholar
  20. [20]
    D. Kolymbas. Bifurcation analysis for sand samples with a non-linear constitutive equation. Ingenieur-Archiv, 50, 131–140, 1981.CrossRefMATHGoogle Scholar
  21. [21]
    D. Kolymbas. A generalized hypoelastic constitutive law. In Proc. XI Int. Conf. Soil Mechanics and Foundation Engineering, volume 5, page 2626, San Francisco, 1985. Balkema.Google Scholar
  22. [22]
    D. Kolymbas. A novel constitutive law for soils. Second Int. Conf. on Constitutive Laws For Engineering Materials: Theory and Applications, Tucson, Arizona, January 1987, Elsevier, 1987.Google Scholar
  23. [23]
    D. Kolymbas. Eine konstitutive Theorie für Böden und andere körnige Stoffe. Publ. Series of Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Vol. 109, 1988.Google Scholar
  24. [24]
    D. Kolymbas. Generalized hypoelastic constitutive equation. In Saada and Bianchini, editors, Constitutive Equations for Granular Non-Cohesive Soils, pages 349–366. Balkema, 1988.Google Scholar
  25. [25]
    D. Kolymbas. Computer-aided design of constitutive laws. International Journal for Numerical and Analytical Methods in Geomechanics, 15, 593–604 (1991).CrossRefMATHGoogle Scholar
  26. [26]
    D. Kolymbas. An outline of hypoplasticity. Archive of Applied Mechanics, 61: 143–151, 1991.MATHGoogle Scholar
  27. [27]
    D. Kolymbas, I. Herle, P.-A. v. Wolffersdorff. Hypoplastic constitutive equation with back stress. International Journal of Numerical and Analytical Methods in Geomechanics, 19 (6): 415–446, 1995.CrossRefMATHGoogle Scholar
  28. [28]
    D. Kolymbas, G. Rombach. Shear band formation in generalized hypoelasticity. Ingenieur-Archiv, 59, 177–186, 1989.CrossRefGoogle Scholar
  29. [29]
    C. Lyle. Spannungsfelder in Silos mit starren, koaxialen Einbauten. Diss., Fakultät für Maschinenbau und Elektrotechnik der TU Carolo-Wilhelmina zu Braunschweig, 1993.Google Scholar
  30. [30]
    A. Niemunis. Hypoplasticity vs. elastoplasticity, selected topics. In D. Kolymbas, editor, Modern Approaches to Plasticity, pages 278–307. Elsevier, 1993.Google Scholar
  31. [31]
    A. Niemunis. A visco-plastic model for clay and its FE-implementation. In XI Colloque Franco-Polonais en Mécanique des Sols et des Roches Appliquée, E. Dembicki, W. Cichy, L. Balachowski (Eds.), University of Gdansk, 1996.Google Scholar
  32. [32]
    A. Niemunis, I. Herle. Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials, Vol. 2, 279–299 (1997).CrossRefGoogle Scholar
  33. [33]
    R. Nova. Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes, In: Journal of the Mechanical Behaviour of Materials, Vol. 5, n 2, 193–201.Google Scholar
  34. [34]
    G.A. Rombach. Schüttguteinwirkungen auf Silozellen, Exzentrische Entleerung. Veröffentlichungen Heft 14, Dissertation, Institut für Massivbau und Baustofftechnologie der Universität Fridericiana in Karlsruhe, 1991.Google Scholar
  35. [35]
    C. Ruckenbrod. Statische und dynamische Phänomene bei der Entleerung von Silozellen. Schriftenreihe des Institutes für Massivbau und Baustofftechnologie der Universit“t Fridericiana in Karlsruhe, Heft 26, 1995.Google Scholar
  36. [36]
    Z. Sikora. Hypoplastic flow of granular materials. A numerical approach. Publ. Series of Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Vol. 123, 1992.Google Scholar
  37. [37]
    Z. Sikora, W. Wu. Shear band formation in biaxial tests. Proc. Int. Conf. on Constitutive Laws for Engineering Materials, Tucson, Arisona, USA, 1991.Google Scholar
  38. [38]
    J. Tejchman. Shear banding and autogeneous dynamics in granular bodies. Publ. Series of Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, No. 140, 1995.Google Scholar
  39. [39]
    J. Tejchman, E. Bauer. Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Computers and Geotechnics, Vol. 19, No. 3, 221–244, 1996.CrossRefGoogle Scholar
  40. [40]
    J. Tejchman, W. Wu. Numerical simulation of shear band formation with a hypoplastic constitutive model. Computers and Geotechnics, 18 (1): 71–84, 1996.CrossRefGoogle Scholar
  41. [41]
    C. Truesdell, W. Noll. The non-linear field theories of mechanics. Handbuch der Physik III/c. Springer-Verlag, 1965.Google Scholar
  42. [42]
    C. Truesdell. Hypo-elasticity. J. Rational Mech. Anal., Vol. 4, 83–133, 1955. Springer-Verlag, 1965.Google Scholar
  43. [43]
    P.-A. von Wolffersdorff. A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials, 1: 251–271, 1996.CrossRefGoogle Scholar
  44. [44]
    P.-A. von Wolffersdorff. Verformungsprognosen für Stützkonstruktionen. Publ. Series of Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Vol. 141, 1997.Google Scholar
  45. [45]
    K.C. Valanis. An endochronic geomechanical model for soils. IUTAM Conference on Deformation and Failure of Granular Materials. Balkema, 159–165, 1982.Google Scholar
  46. [46]
    J. Weidner. Vergleich von Stoffgesetzen granularer Schüttgüter zur Silodruckermittlung. Veröffentlichungen Heft 10, Dissertation, Institut für Massivbau und Baustofftechnologie der Universität Fridericiana in Karlsruhe, 1990.Google Scholar
  47. [47]
    W. Wehr, J. Tejchman, I. Herle, G. Gudehus. Sand anchors — a shear zone problem. Int. Symp. on Deformation and Progressive Failure in Geomechanics, Nagoya, 1997.Google Scholar
  48. [48]
    W. Wu. Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Publ. Series of Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Vol. 129, 1992.Google Scholar
  49. [49]
    W. Wu, E. Bauer. A hypoplastic model for barotropy and pyknotropy of granular soils. In D. Kolymbas, editor, Modern Approaches to Plasticity, 225–245. Elsevier, 1993.Google Scholar
  50. [50]
    W. Wu, E. Bauer. A simple hypoplastic constitutive model for sand. International Journal of Numerical and Analytical Methods in Geomechanics, 18: 833–862, 1994.CrossRefMATHGoogle Scholar
  51. [51]
    W. Wu, E. Bauer, D. Kolymbas. Hypoplastic constitutive model with critical state for granuar materials. Mechanics of Materials, 23: 45–69, 1996.CrossRefGoogle Scholar
  52. [52]
    W. Wu, E. Bauer, A. Niemunis, I. Herle. Visco-hypoplastic models for cohesive soils. In D. Kolymbas, editor, Modern Approaches to Plasticity, 365–383. Elsevier, 1993.Google Scholar
  53. [53]
    W. Wu, D. Kolymbas. Numerical testing of the stability criterion for hypoplastic constitutive equations. Mechanics of Materials, 9: 245–253, 1990.CrossRefGoogle Scholar
  54. [54]
    W. Wu, A. Niemunis. Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mechanics of Cohesive-Frictional Materials, 1: 145–163, 1996.CrossRefGoogle Scholar
  55. [55]
    W. Wu, A. Niemunis. Beyond Failure in Granular Materials. Int. J. for Numerical and Analytical Methods in Geomechanics, Vol. 21, No. 2, 153–174, 1997.CrossRefMATHGoogle Scholar
  56. [56]
    W. Wu, Z. Sikora. Localized bifurcation in hypoplasticity. International Journal of Engineering Science, 29 (2): 195–201, 1991.CrossRefMATHGoogle Scholar
  57. [57]
    W. Wu, Z. Sikora. Localized Bifurcation of Pressure Sensitive Dilatant Granular Materials. Mechanics Research Communications, Vol. 29, 289–299, 1992.CrossRefGoogle Scholar
  58. [58]
    M. Ziegler. Berechnung des verschiebungsabhängigen Erddrucks in Sand. Veröffentlichungen Heft 101, Institut für Bodenmechanik undFelsmechanik der Universität Fridericiana in Karlsruhe, 1986.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • D. Kolymbas
    • 1
  • I. Herle
    • 1
  1. 1.University of InnsbruckInnsbruckAustria

Personalised recommendations