Micromechanical Approach in Granular Materials

  • B. Cambou
Part of the International Centre for Mechanical Sciences book series (CISM, volume 385)


Granular materials are made up of grains in contact. These kinds of materials are then, highly discontinuous and nonhomogeneous with two or three phases (solids and voids which may be made up of air or air and water). The macroscopic properties of these materials are obviously related to the basic structure and properties of the constituents and their interactions (grains and voids). It therefore seems of great interest to derive the overall behaviour of such materials (discontinuous, inhomogeneous material) from the local properties. This kind of approach has been used extensively and is now usual for nonhomogeneous, continuous materials (fluids or solids) and is known as “the homogenization process”. The aim of this kind of approach is, in particular, to derive the constitutive equations of a material to be used at the scale of the boundary problem, from the knowledge of the local behaviour and microstructure. This approach differs greatly from the phenomenological approach in which the constitutive equations are defined considering mathematical formulations whose constants are obtained from experimental tests.


Contact Force Granular Material Representative Volume Element Granular Medium Regular Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bardet, J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials, Mechanics of Materials, Vol. 18 (1994), 159–182.CrossRefGoogle Scholar
  2. 2.
    Biarez, J.: Contribution à l’étude des propriétés mécaniques des sols et des matériaux pulvérulents, Thesis, Grenoble, (1962).Google Scholar
  3. 3.
    Biarez, J., Wiendieck, K.: La comparaison qualitative entre l’anisotropie mécanique et l’anisotropie de structure, Comptes rendus à l’Académie des Sciences, Paris n° 254, (1963), 2712–2714.Google Scholar
  4. 4.
    Calvetti, F., Combe, G., Lanier, J.: Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path, Mechanics of cohesive frictional materials, vol 2, (1997), 121–163.CrossRefGoogle Scholar
  5. 5.
    Caillerie, D.: Evolution quasistatique d’un milieu granulaire, loi incrémentale par homogénéïsation, in: Des géomatériaux aux ouvrages, Hermes, Paris, (1995), 53–80.Google Scholar
  6. 6.
    Cambou, B., Dubujet, Ph., Emeriault, F., Sidoroff, F.: Homogenization for granular materials, European Journal of Mechanics, A/solids, vol. 14 (2), (1995), 225–276.MathSciNetGoogle Scholar
  7. 7.
    Cambou, B.: From global to local variables in granular materials, Powders and Grains (1993), Thornton ed., Balkema, (1993), 73–86.Google Scholar
  8. 8.
    Chang, C.S., Misra, A., Sundaram, S.: Micromechanical modelling of cemented sands under low amplitude oxcillations, Geotechnique 40, n° 2, (1990), 251–263.CrossRefGoogle Scholar
  9. 9.
    Chang, C. S. Micromechanical modeling of deformation and failure for granulates with frictional contacts, Mechanics of Materials, vol. 16, (1993), 13–24.CrossRefGoogle Scholar
  10. 10.
    Chang, C. S., Liao, C. L.: Estimates of elastic modulus for media of randomly packed granules, Applied Mechanics Revue, vol. 47 n° 1, part 2, (1994), 197–206.Google Scholar
  11. 11.
    Chapuis, P.: De la structure géométrique des milieux granulaires en relation avec leur comportement mécanique, Thesis, Ecole Polytechnique, Montréal, Canada, (1976).Google Scholar
  12. 12.
    Christofferson, J., Mehrabadi, M.M., Nemat-Nasser, S.: A micromechanical description of granular material behavior, Journal of Applied Mechanics, ASME, vol. 48 n0 2, (1981), 339–344.CrossRefGoogle Scholar
  13. 13.
    Cundall, P.A., and Strack, O.D.L.: A discrete numerical model for granular assemblies, Geotechnique, Vol. 29 (1979), 47–65.CrossRefGoogle Scholar
  14. 14.
    Dantu, P.: Contribution à l’étude mécanique et géométrique des milieux pulvérulents, Proceedings of the 4th International Conference of Soil Mechanics and Foundation Engineering, London, U.K. (1957), 144–148.Google Scholar
  15. 15.
    Delyon, F., Dufresne, D., Levy, Y.: Physique et génie civil, deux illustrations simples, Annales des Ponts et Chaussées, numéro spécial: Mécanique des milieux granulaires, (1990), 53–60.Google Scholar
  16. 16.
    Deresiewicz, H.: Mechanics of granular matter, in Advances in applied mechanics 5 Academic Press-New York, (1958), 233–306.Google Scholar
  17. 17.
    El Hosri, M.: Contribution à l’étude des propriétés mécaniques des matériaux, Thesis, Université Paris V I, (1984).Google Scholar
  18. 18.
    Emeriault, F., Cambou, B. Micromechanical modelling of anisotropic non-linear elasticity of granular medium, International Journal of Solids and Structures, vol. 33 n° 18, (1996), 2591–2607.CrossRefGoogle Scholar
  19. 19.
    Emeriault, F., Cambou, B. Mahboubi, A. Homogenization for granular materials, non reversible behaviour, Mechanics of Cohesive-Frictional Materials, vol. 1, (1996), 199–218.CrossRefGoogle Scholar
  20. 20.
    Field, W. G. Towards the statistical definition of a granular mass, proceedings of 4th Australia-New Zealand conf. on soil mechanics and found. eng., (1963), 143–148.Google Scholar
  21. 21.
    François, D., Pineau, A. Zaoui, A.: Comportement mécanique des matériaux, Vol 1, Hermes, Paris, 1992.Google Scholar
  22. 22.
    Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Physics Solids, Vol. 11 (1967), 357–372.CrossRefGoogle Scholar
  23. 23.
    Kruyt, N.P., Rothenburg, L.: Micromechanical definition of the strain tensor for granular materials. Journal of Applied Mechanics, vol. 118 (1996), 706–711.CrossRefGoogle Scholar
  24. 24.
    Oda, M., Iwashita, K., Kakiuchi, T • Importance of particle rotation in the mechanics of granular materials, in Powders and Grain, Behringer and Jenkins Eds, Balkema publisher, (1997), 207–210.Google Scholar
  25. 25.
    Oda, M., Konishi, J., Nemat Nasser, S.: Experimental micromechanical evaluation of strength of granular materials: effect of particle rolling, Mechanics of materials n°1, (1982), 269–283.Google Scholar
  26. 26.
    Rowe, P.W.: The stress-dilatancy, earth pressures, and slopes. ASCE, SM3, (1963), 37–61.Google Scholar
  27. 27.
    Rowe, P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. Roy. Soc. London A269, (1962), 500–527.CrossRefGoogle Scholar
  28. 28.
    Satake, M;: Fabric tensor in granular material, Proceedings of the IUTAM symposium on deformation and failure of granular materials, Delft, Balkema Publisher, P.A. Vermeer and H.J. Luger Eds. (1982), 63–68.Google Scholar
  29. 29.
    Sidoroff, F., Cambou, B., Mahboubi, A.: Contact force distribution in granular media, Mechanics of materials, vol. 16, (1993), 83–89.CrossRefGoogle Scholar
  30. 30.
    Weber, J.: Recherche concernant les contraintes intergranulaires dans les milieux pulvérulents, Bulletin de liaison des Ponts et Chaussées, Paris, no 20, (1966), 1–20.Google Scholar
  31. 31.
    Yanagisawa, E.: Influence of void ratio and stress condition on the dynamic shear modulus of granular media, in: Advances in the mechanics and the flow of granular materials–M. Shahinpoor Ed.–Gulf Publishing–Houston, (1983), 947–960.Google Scholar
  32. 32.
    Zaoui, A.: Comportement global des polycristaux: passage du monocristal au polycristal, in: Physique et mécanique de la mise en forme des métaux, Presses du CNRS, Paris, (1990), 337–351.Google Scholar
  33. 33.
    Zanchez-Palencia, E., Zaoui, A.: Homogenization techniques for composite media, Springer-Verlag, Berlin, 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • B. Cambou
    • 1
  1. 1.Central School of LyonEcullyFrance

Personalised recommendations