Advertisement

Introduction to Computational Granular Mechanics

  • J. P. Bardet
Part of the International Centre for Mechanical Sciences book series (CISM, volume 385)

Abstract

The first discrete modeling of soils can be traced to Hertz [90] who formulated a contact law between spheres, and Reynolds [167] who proposed a dilatancy theory. Dantu [55] and Schneebli [180] idealized real soils as assemblies of rigid rods, and noticed some striking similarities between the mechanical responses of these mechanical analogs and real soils. Duffy and Mindlin [70], Deresiewicz [59, 60], and Thurston and Deresiewicz [204] examined the response of soil models made of spheres. Biarez [21] used glass beads and duralumium rods to examine the elastic and limit response of soils, and applied his observations to analyze practical problems in geotechnical engineering. These pioneer works were later followed by photoelastic investigations [e.g., 67, 68] to visualize stresses within granular media.

Keywords

Shear Band Granular Material Discrete Element Method Granular Medium Rotational Stiffness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizawa, T., S. Tamura, Y. Shibata, J. Okuno, and J. Kihara, 1993, Powder granular modeling and simulation for agglomeration, Proceedings of the 6 th international symposium on agglomeration, Nagoya, Japan, 70–75.Google Scholar
  2. 2.
    Anandarajah, A., 1994, Micromechanics of clays evaluated by the discrete element methods, Proceedings of the 8th International Conference on Computer Methods and Advances in Geomechanics, Morgantown, VA, H. J. Siriwardane, and M. M. Zaman, Balkema, Rotterdam, The Netherlands, 797–802.Google Scholar
  3. 3.
    Azarkhin, A., 1988, Some history dependent problems for dissimilar cylinders with finite friction, Journal of Applied Mechanics, ASME, 55; 81–86.Google Scholar
  4. 4.
    Bardet, J. P., 1994, Numerical simulations of the incremental responses of idealized granular materials, International Journal of Plasticity, 10 (8), 879–980.MATHGoogle Scholar
  5. 5.
    Bardet, J. P., 1994, Observations on the effects of particle rotations on the failure of idealized granular materials, Mechanics of Materials, 18, 159–182.Google Scholar
  6. 6.
    Bardet, J. P., 1997, Experimental Soil Mechanics, Prentice-Hall, Upper Saddle River, NJ.Google Scholar
  7. 7.
    Bardet, J. P., and J. Proubet, 1989, JP2, a program to simulate the behavior of two-dimensional granular materials, Civil Engineering Department, University of Southern California, Los Angeles, CA.Google Scholar
  8. 8.
    Bardet, J. P., and J. Proubet, 1991, A numerical investigation of the structure of persistent shear bands in granular materials, Géotechnique, 41 (4), 599–613.Google Scholar
  9. 9.
    Bardet, J. P., and J. Proubet, 1991, Adaptative relaxation technique for the statics of granular materials, Computers and Structures, 39 (3/4), 221–229.Google Scholar
  10. 10.
    Bardet, J. P., and J. Proubet, 1992, A shear band analysis in idealized granular materials, Journal of Engineering Mechanics, ASCE, 118 (2), 397–415.Google Scholar
  11. 11.
    Bardet, J. P., and Q. Huang, 1992, Numerical modeling of micropolar effects in idealized granular materials, in Mechanics of granular materials and powder systems, M. M. Mehrabadi, ed., ASME, 37, 85–92.Google Scholar
  12. 12.
    Bardet, J. P., and Q. Huang, 1993, Rotational stiffness of cylindrical particle contacts, Proceedings of the 2n d International Conference on Micromechanics of Granular Media, Birmingham, UK, C. Thornton, ed., 39–44.Google Scholar
  13. 13.
    Bardet, J. P., and R. F. Scott, 1985, Seismic stability of fractured rock masses with the distinct element method, Proceedings of the 26 th Us Symposium on Rock Mechanics, Rapid City, SD, E. Ashworth, ed., 139–149.Google Scholar
  14. 14.
    Bashir, Y. M. and J. D. Goddard, 1991, A novel simulation method for the quasistatic mechanics of granular assemblages, J. Rheology, 35 (5), 849–885.Google Scholar
  15. 15.
    Bathe, K. J., 1996, Finite element procedures, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  16. 16.
    Bathurst, R. J., and L. Rothenburg, 1988, Micromechanical aspects of isotropic granular assemblies with linear contact interactions, Journal of Applied Mechanics, ASME, 55, 17–23.Google Scholar
  17. 17.
    Bathurst, R. J., and L. Rothenburg, 1988, Note on a random isotropic granular material with negative Poisson’s ratio, International Journal of Engineering Sciences, 26 (4), 373–383.MATHGoogle Scholar
  18. 18.
    Bathurst, R. J., and L. Rothenburg, 1990, Observations on stress-force-fabricrelationships in idealized granular materials, Mechanics of Materials, 9, 65–80.Google Scholar
  19. 19.
    Behringer, R. P., and J. T. Jenkins, Eds., 1997, Proceedings of the 3.d International Conference on Powders and Grains, Durham, NC, Balkema, Rotterdam, the Netherlands.Google Scholar
  20. 20.
    Bentall, R. H., and K. L. Johnson, 1967 Slip in the rolling contact of two dissimilar elastic rollers, Int. J. Mech. Sci., 9 (55), 389–404.Google Scholar
  21. 21.
    Biarez, J., 1962, Contribution à l’ étude des propriétés mécaniques des sols et des materiaux pulvérulents, Ph.D. Thesis, University of Grenoble, France.Google Scholar
  22. 22.
    Biarez, J., and R. Gourves, Eds., 1989, Proceedings of the l’ s ` International Conference on Powders and Grains, Clermont-Ferrand, France, Balkema, Rotterdam, the Netherlands.Google Scholar
  23. 23.
    Bishop, A. W., 1954, Correspondence on shear characteristics of a saturated silt measured in triaxial compression, Géotechnique, 4 (1), 43–45.Google Scholar
  24. 24.
    Bogdanova-Bontcheva, N., and H. Lippmann, 1975, Rotationssymmetrisches ebenes Fließen eines granularen Modellmaterials, Acta Mechanica, 21, in German, 93–113.Google Scholar
  25. 25.
    Borja, R. L and J. R. Wren, 1995a, Micromechanics of granular media, Part I: Generation of overall constitutive equation for assemblies of circular disks, Comput. Methods Appli. Mech. Engrg., 127, 13–36.MATHMathSciNetGoogle Scholar
  26. 26.
    Borja, R. I. and J. R. Wren, 1995b, Micromechanics of continuum models for granular materials, Proc. 10th Conf Engineering Mechanics, ASCE, S. Sture, ed., 11, 497–500.Google Scholar
  27. 27.
    Brogliato, B., 1996, Nonsmooth Impact Mechanics. Models, Dynamics and Control,Lecture Notes in Control and Information Sciences, 220, Springer-VerlagGoogle Scholar
  28. 28.
    Bromwell, L. W., 1966, The friction of quartz in high vacuum, M.I.T. Department of Civil Engineering, Research Report B66–18.Google Scholar
  29. 29.
    Campbell, C. S., and C. E. Brennen, 1985, Computer simulation of granular shear flow, Journal of Fluid Mechanics, 151, 167–188.Google Scholar
  30. 30.
    Carter, F.W, 1926, On the action of a locomotive driving wheel, Proc. Royal Society, A112, 151–157.MATHGoogle Scholar
  31. 31.
    Chang, C. S., 1993, Micromechanical modeling of deformation and failure for granulates with frictional contacts, Mechanics of Materials, 16, 13–24.Google Scholar
  32. 32.
    Chang, C. S., A. Misra, and K. Acheampong, 1992, Elastoplastic deformation for particulates with frictional contacts, Journal of Engineering Mechanics, ASCE, 118 (8), 1692–1707.Google Scholar
  33. 33.
    Chang, C. S., A. Misra, and S. Sundararam, 1990, Micromechanical modeling of cemented sands under low amplitude oscillations, Géotechnique, 40 (2), 251–263.Google Scholar
  34. 34.
    Chang, C. S., and A. Misra, 1989, Computer simulation and modeling of mechanical properties of particulates, Computers and Geotechnics, 7 (4), 269–287.Google Scholar
  35. 35.
    Chang, C. S., and A. Misra, 1990, Packing structure and mechanical properties of granulates, Journal of Engineering Mechanics, ASCE, 116 (5), 1077–1093.Google Scholar
  36. 36.
    Chang, C. S., and C. S. Liao, 1990, Constitutive relation for a particulate medium with the effect of particle rotation, Int. J. Solids and Structures, 26 (4), 437–455.MATHGoogle Scholar
  37. 37.
    Chang, C. S., and J. Gao, 1995, Second-gradient constitutive theory for granular material with random packing structure, Int. J. Solids and Structures, 32 (16), 22792293.Google Scholar
  38. 38.
    Chang, C. S., and L. Ma, 1991, A micromechanical-based micropolar theory for deformation of granular solids, Int. J. Solids and Structures, 28 (1), 67–86.MATHGoogle Scholar
  39. 39.
    Chang, C. S., M. G. Kabir, and Y. Chang, 1992b, Micromechanical modeling for tress-strain behavior of granular soils. II: Evaluation Journal of Geotechnical Engineering, ASCE, 118 (12), 1975–1992.Google Scholar
  40. 40.
    Chang, C. S., S. J. Chao, and Y. Chang, 1995, Estimates of elastic moduli for granular material with anisotropic random packing structure, Int. J. Solids and Structures, 32 (14), 1989–2008.MATHGoogle Scholar
  41. 41.
    Chang, C. S., Y. Chang, and M. G. Kabir, 1992, Micromechanical modeling for stress-strain behavior of granular soils. I: Theory, Journal of Geotechnical Engineering, ASCE, 118 (12), 1959–1974.Google Scholar
  42. 42.
    Chichili, D. R., D. E. Mouton, and M. M. Mehrabadi, 1993, Simulation of the mechanical behavior of two-dimensional granular assemblies utilizing linear programming, Mechanics of Materials, submitted.Google Scholar
  43. 43.
    Christoffersen, J., M. M. Mehrabadi, and S. Nemat-Nasser, 1981, A micromechanical description of granular material behavior, Journal of Applied Mechanics, ASME, 48, 339–344.MATHGoogle Scholar
  44. 44.
    Clément, E., J. Duran and J. Rajchenbach, 1992, Experimental study of heaping in a two-dimensional sandpile, Physics Review Letters, 69, 1189–1192.Google Scholar
  45. 45.
    Cosserat, E., and F. Cosserat, 1909, Théorie des corps déformables, Hermann, Paris.Google Scholar
  46. 46.
    Cundall, P. A, 1982, Adaptative density-scaling for time-explicit calculations, Proceedings of the 4 112 International Conference on Numerical methods in geomechanics, Edmonton, 23–26.Google Scholar
  47. 47.
    Cundall, P. A., 1971, A computer model for simulating progressive large scale movements of blocky rock systems, Proceedings of the Symposium of the International Society of Rock Mechanics, Nancy, France, 1, 132–150.Google Scholar
  48. 48.
    Cundall, P. A., 1980, UDEC - A generalized distinct element program for modeling jointed rock, Final Technical Report to European Research Office, US Army, Contract No. DMA 37–79-C-0548, NTIS order No. AD-A087 610 /2.Google Scholar
  49. 49.
    Cundall, P. A., 1988, Formulation of a three-dimensional distinct element model–Part I: A scheme to detect and represent contacts in a system composed of many polyhedral blocks, International Journal of Rock Mechanics, 25, 107–116.Google Scholar
  50. 50.
    Cundall, P. A., 1989, Numerical experiments on localization in frictional materials, Ingenieur-Archiv, 59, 148–159.Google Scholar
  51. 51.
    Cundall, P. A., 1989, Numerical modeling of discontinua, Proceedings of the l’ s` US Conference on Discrete Element Methods (DEM), G. G. W. Mustoe, M. Henriksen,. and H. -P. Huttelmaier, Eds., Colorado School of Mines Press, Golden, CO, 1–17.Google Scholar
  52. 52.
    Cundall, P. A., and O. D. L. Strack, 1978–1979, The distinct element method as a tool for research in granular media, Parts I and II, Report to National Science Foundation, Eng. 76–20711,Department of Civil and Mineral Engineering, University of Minnesota, Minneapolis, MN.Google Scholar
  53. 53.
    Cundall, P. A., and O. D. L. Strack, 1979, A discrete numerical model for granular assemblies, Géotechnique, 29, 47–65.Google Scholar
  54. 54.
    Cundall, P.A., A. Drescher, and O.D.L. Strack, 1982, Numerical experiments on granular assemblies; Measurement and observations, Proceedings of the IUTAM symposium on deformation and failure of granular materials, Delft, Balkema Publishers, P.A. Vermeer and H.J. Luger Eds., 355–370.Google Scholar
  55. 55.
    Dantu, P., 1957, Contribution à l’ étude mécanique et géometrique des milieux pulvérulents, Proceedings of the el m International Conference of Soil Mechanics and Foundation Engineering, London, UK.Google Scholar
  56. 56.
    Daudon, D., J. Lanier, and M. Jean, 1997, A micromechanical comparison between experimental results and numerical simulation of a biaxial test on 2D granular materials, Proceedings of the 3’ d International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 219–222.Google Scholar
  57. 57.
    de Josselin de Jong, G., 1959, Statics and kinematics of the failable zone of a granular material, Vitgeverij Waltman, Delft.Google Scholar
  58. 58.
    Delassus, E., 1917, Mémoire sur la théorie des liaisons finies unilatérales, Ann. Sci. Ecole Norm. Sup., 34, 95–179.MATHMathSciNetGoogle Scholar
  59. 59.
    Deresiewicz, H., 1958, Mechanics of granular material, Advd. Appl. Mech., 5, 233306.Google Scholar
  60. 60.
    Deresiewicz, H., 1958, Stress-strain relations for a simple model of a granular medium, Journal of Applied Mechanics, ASME, 403–406.Google Scholar
  61. 61.
    Desrues, J., 1984, Localization de la déformation plastique dans les matériaux granulaires, Thèse d’état, Université de Grenoble.. Google Scholar
  62. 62.
    Desrues, J., and B. Duthilleul, 1984, Stereophotogrametric method applied to the determination of plane strain fields, Journal de Mécanique théorique et appliquée, 3 (1), 79–103.Google Scholar
  63. 63.
    Desrues, J., J. Lanier, and P. Stutz, 1985, Localization of the deformation in tests on sand samples, Engineering Fracture Mechanics, 21, 909–921.Google Scholar
  64. 64.
    Diepolder, W., V. Mannl, and H. Lippman, 1991, The Cosserat continuum, a model for grain rotations in metals?, International journal of plasticity, 7, 313–328.Google Scholar
  65. 65.
    Dobry, R., and T.-T. Ng, 1992, Discrete modeling of stress-strain behavior of granular media at small and large strain, Engineering Computations, 9, 129–143.Google Scholar
  66. 66.
    Doménech, A., T. Doménech, and J. Cebriân, 1987, Introduction to the study of rolling friction, American Journal of Physics, 55 (3), 231–235.Google Scholar
  67. 67.
    Drescher, A. 1976, An experimental investigation of flow rules for granular materials using optically sensitive glasss particles, Géotechnique, 26 (4), 591–601.Google Scholar
  68. 68.
    Drescher, A. and G. De Josselin de Jong, 1972, Photoelastic verification of a material model for the flow of a granular material. J. Mech. Phys. Solids, 20, 337–351.Google Scholar
  69. 69.
    Dubujet, P., B. Cambou, F. Dedecker, and F. Emeriault, 1997, Statistical homogenization for granular media–Application to non linear elastic modeling, Proceedings of the 3’ International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 199–202.Google Scholar
  70. 70.
    Duffy, J., and Mindlin, R.D., 1957, Stress-strain relations and vibrations of a granular medium, J. of Applied Mech., ASME, 79, 585–593.MathSciNetGoogle Scholar
  71. 71.
    El-Sohby, A. A. K., 1969, Deformation of sand under constant stress ratio, Proceedings of the 7` h international conference in Soil Mechanics and Foundation Engineering, Mexico, 1, 111–119.Google Scholar
  72. 72.
    Eringen, A.C., 1966, Linear theory of micropolar elasticity, Journal of Mathematics and Mechanics, 15 (6, 909–923.Google Scholar
  73. 73.
    Eringen, A.C., 1967, Mechanics of Continua, John Wiley, New York, NY.Google Scholar
  74. 74.
    Fabrikant, V. I., 1986, Inclined flat punch of arbitrary shape on an elastic half-space, Journal of Applied Mechanics, ASME, 53, 798–806.MATHGoogle Scholar
  75. 75.
    Fabrikant, V. I., 1988, Elastic field around a circular punch, Journal of Applied Mechanics, ASME, 55, 604–605.MATHGoogle Scholar
  76. 76.
    Foerster, S., M. Louge, H. Chang and K. Allia, 1994, Measurements of the collision properties of small spheres, Phys. Fluids, 6, 1108–1115.Google Scholar
  77. 77.
    Frankel, S. P., 1950, Convergences rates of iterative treatments of partial differential equations, Mathl. Tabl. Natn. Res. Coun., Washington DC, 4, 65–75.MathSciNetGoogle Scholar
  78. 78.
    Germain, P., 1973, La méthode des puissances virtuelles en mécanique des milieux continus. Théories due second gradient, Journal de Mécanique, 12 (2), 235–274.MATHMathSciNetGoogle Scholar
  79. 79.
    Germain, P., 1973, The method of virtual power in continuum mechanics. Part 2: Microstructures, J. of Applied Mathematics, SIAM, 25 (3), 556–575.MATHMathSciNetGoogle Scholar
  80. 80.
    Ghaboussi, J., and R. Barbosa, 1990, Three-dimensional discrete element method for granular materials, International Journal for Numerical and Analytical Methods in Geomechanics, 14, 451–472.Google Scholar
  81. 81.
    Goddard, J. D., 1977, An elastohydrodymanic theory for the rheology of concentrated suspensions of deformable particles, Journal of Non-Newtonian Fluid mechanics, 2, 169–189.MATHGoogle Scholar
  82. 82.
    Goddard, J. D., 1986, Microstructural origins of continuum stress fields–A brief history and some unresolved issues, Chapter 6 in Recent developments in structured continua, D. DeKee and P. N. Kaloni, Eds., Pitman research notes in mathematics (143, Longman/J. Wiley, p. 179–208.Google Scholar
  83. 83.
    Goddard, J. D., X. Zhueng, and A. K. Didwania, 1993, Microcell methods and the adjacency matrix in the simulation of the mechanics of granular media, Proceedings of the 2 nd international conference on discrete element methods, Massachusetts Institute of Technology, J. R. Williams and G. W. Mustoe, Eds., March, 3–14.Google Scholar
  84. 84.
    Goodman, E. L., 1962, Contact stress analysis of normally loaded rough spheres, J. of Applied Mech., ASME, 515–522.Google Scholar
  85. 85.
    Gray, J. E., 1960, The relationship between principal stress dilatancy and friction angle of a granular materials, M. Sc. Thesis, University of Manchester, UK.Google Scholar
  86. 86.
    Greening, D. R., G. G. W. Mustoe, and G. L. DePorter, 1997, Discrete element modeling of fabrication flaw precursors in the compaction of agglomerated ceramic powders, Proceedings of the 3rd International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 113–116.Google Scholar
  87. 87.
    Hafiz, M. S., 1950, Strength characteristics of sands and gravels in direct shear, PhD thesis, University of London, UK.Google Scholar
  88. 88.
    Hahn, J. K., 1988, Realistic animation of rigid bodies, Computer graphics, 22. (4), 299–308.Google Scholar
  89. 89.
    Hart, R. D., P. A. Cundall, and J. Lemos, 1988, Formulation of a three-dimensional distinct element model–Part II: Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks, International Journal of Rock Mechanics, 25, 117–126.Google Scholar
  90. 90.
    Hertz, H., 1882, Über die Berührung fester elastische Körper and über die Harte (On the contact of rigid elastic solids and on hardness), Verhandlungen des Vereins zur Befôrderung des Gewerbefleisses, Leipzig.Google Scholar
  91. 91.
    Hill, R., 1962, Acceleration waves in solids, J. Mech. Phys. Solids, 10, 1–16.MATHMathSciNetGoogle Scholar
  92. 92.
    Hill, R., 1967, The essential structure of constitutive laws for metal composite and polycrystals, J. Mech. Physics Solids, 11, 357–372.Google Scholar
  93. 93.
    Hocking, G., G. G. W. Mustoe, and J. R. Williams, 1985, CICE discrete element analysis code - theoretical manual, Applied Mechanics Inc., Lakewood, CO.Google Scholar
  94. 94.
    Hong, C.-W., 1997, Process modeling and design for colloidal powder forming, Proceedings of the 3rd International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 41–44.Google Scholar
  95. 95.
    Horn, H. M., and D. V. Deere, 1962, Frictional characteristics of minerals, Géotechnique, 12 (4), 319–335.Google Scholar
  96. 96.
    Horne, M. R., 1965, The behavior of an assembly of rotund, rigid, cohesionless particles (I and II), Proc. Roy. Soc. London, A286, 62.Google Scholar
  97. 97.
    Home, M. R., 1969, The behavior of an assembly of rotund, rigid, cohesionless particles (III), Proc. Roy. Soc. London, A310, 21.Google Scholar
  98. 98.
    Houlfsly, G.T., 1981, A study of plasticity theory and their applicability to soils, Ph.D. thesis, University of Cambridge. Google Scholar
  99. 99.
    Hughes, T. J. R., 1983, Analysis of transient algorithms with particular reference to stability behavior, Computational methods for transient analysis, T. Belitschko, and T.J.R. Hughes, Eds., North Holland, Amsterdam, Holland, 67–156.Google Scholar
  100. 100.
    Hughes, T. J. R., 1987, The finite element method, Prentice-Hall, Englewoods Cliffs, NJ.Google Scholar
  101. 101.
    Hughes, T. J. R., and T. Belytschko, 1993, Nonlinear finite element analysis, Short course notes, Stanford, CA.Google Scholar
  102. 102.
    Jagota, A., C. Argento, and S. Mazur, 1997, Viscoelastic coalescence of spherical particles, Proceedings of the 3rd International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 31–36.Google Scholar
  103. 103.
    Jean, M., 1995, Frictional contact in collections of rigid or deformable bodies: numerical simulation of geomaterials, in Mechanics of Geomaterial Interfaces, Eds. A. P. S. Salvadurai and M. J. Boulon, Elsevier Science Publisher, Amsterdam, 463–486.Google Scholar
  104. 104.
    Jean, M., and J. J. Moreau, 1996, Numerical treatment of contact and friction: the Contact Dynamics method, Proc.1996 Engineering Systems Design and Analysis Conference,Eds. A. Lagarde and M. Raous, ASCE, New York, 4, 201–208.Google Scholar
  105. 105.
    Johnson, D. L., L. M. Schwartz, D. Elata, J. G. Berryman, B. Hornby, and A. N. Norris, 1997, Linear and nonlinear elasticity of granular media: Stress-induced anisotropy of a random sphere pack, Proceedings of the 3rd International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 243–246.Google Scholar
  106. 106.
    Johnson, K. L., 1958, The effect of spin upon the rolling motion of an elastic sphere on a plane, Journal of Applied Mechanics, September, 332–338.Google Scholar
  107. 107.
    Johnson,. K. L., 1958, The effect of tangential contact force upon the rolling motion of an elastic sphere on a plane, Journal of Applied Mechanics, September, 339–346.Google Scholar
  108. 108.
    Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.Google Scholar
  109. 109.
    Kalker, J. J., 1970, Transient phenomena in two elastic cylinders rolling over each other with dry friction, J. of Applied Mech., ASME, 677–688.Google Scholar
  110. 110.
    Kalker, J. J., 1990, Three-dimensional elastic bodies in rolling contact, Kluwer Academic Publishers, Dordrecht, The Netherlands, 59–97.Google Scholar
  111. 111.
    Kanatani, K., 1979, A micro-polar continuum theory for the flow of granular materials, Int. Journal of Engineering Science, 17 (4), 419–432.MATHGoogle Scholar
  112. 112.
    Kawaguchi, T., Y. Yamamoto, T. Tanaka, and Y. Sudji, 1995, Numerical simulation of a single rising bubble in a two–dimensional fluidized bed, Proceedings of the 2nd International Conference on Multiphase Flows, Kyoto, Japan, FB2–17–22.Google Scholar
  113. 113.
    Ke, T.-C., and J. Bray, 1995, Modeling of particulate media using discontinuous deformation analysis, Journal of Engineering Mechanics, ASCE, 121 (11), 12341243.Google Scholar
  114. 114.
    Kishino, Y., 1988, Disc model analysis of granular media, in Micromechanics of Granular Materials, M. Satake and J. T. Jenkins, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands, 143–152.Google Scholar
  115. 115.
    Knight, J. B., H. M. Jaeger and S. R. Nagel, 1993, Vibration-induced size separation in granular media: the convection connection, Physics Review Letters, 70, 37283731.Google Scholar
  116. 116.
    Koenders, M. A., 1987, The incremental stiffness of an assembly of particles, Acta Mechanica, 70, 31–49.MATHGoogle Scholar
  117. 117.
    Krawietz, A., 1982, Some features of the gross behavior of granular media from micromechanics, Proceedings of the IUTAM conference on deformation and failure of granular materials, Delft, Balkema, Rotterdam, The Netherlands, 29–36.Google Scholar
  118. 118.
    Laalai, K. Sab, and N. Guérin, 1995, Micromechanical modelling of ballasted tracks, in Contact Mechanics, Eds. M. Raous et al., Plenum Press, New York, 363368.Google Scholar
  119. 119.
    LaBudde, R. A., and D. Greenspan, 1976, Energy and momentum conserving methods of arbitrary order for the numerical integration of equation of motion, I. Motion of a single particle, II. Motion of a system of particles, Numerical Mathematics, 25, 323–346; 26, 1–16.MathSciNetGoogle Scholar
  120. 120.
    Lambe, T. W. and R. V. Whitman, 1979, Soil Mechanics, John Wiley and Sons, New York, N.Y.Google Scholar
  121. 121.
    Lecornu, L., 1905, Sur la loi de Coulomb, Comptes Rendus Acad. Sci. Paris, 140, 847–848.MATHGoogle Scholar
  122. 122.
    Lee, I. K., 1966, Stress dilatancy performance of feldspar, Journal of the Soil Mechanics and Foundations Division, ASCE, 92, SM2, 79–103.Google Scholar
  123. 123.
    Lesburg, L., X. Zhang, L. Vu-Quoc, and O. R. Walton, 1997, Simplified tangential force-displacement models for a discrete element particle flow code, Proceedings of the 3rd International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 243–246.Google Scholar
  124. 124.
    Lian, G., C. Thornton, and M. J. Adams, 1997, A microscopic simulation of oblique collision of wet agglomerates, Proceedings of the 3rd International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 159–162.Google Scholar
  125. 125.
    Lun, C. K. K., and A. A. Bent, 1993, Computer simulation of simple shear flow of inelastic frictional spheres, Proceedings of the 2nd International Conference on Micromechanics of Granular Media, Birmingham, UK, C. Thornton, ed., Balkema, Rotterdam, 301–306.Google Scholar
  126. 126.
    Manna, S. S., and H. J. Herrmann, 1991, Precise determination of the fractal dimensions of Appolonian packing and space-filling bearings, Journal of Physics, A: Math. Gen., 24, 481–490.MathSciNetGoogle Scholar
  127. 127.
    Matsuoka, H., and S. Yamamoto, 1994, A microscopic studdy on shear mechanism of granular materials by DEM, Journal of Geotechnical Engineering, JSCE, In Japanese, 487, 167–175.Google Scholar
  128. 128.
    Meakin P., and A. T. Skeltorp, 1993, Application of experimental and numerical methods to the physics of multiparticle systems, Advances in Physics, 42 (1), 1–127.Google Scholar
  129. 129.
    Meftah, W. P. Evesque, J. Biarez, D. Sornette, and N. E. Abriak, 1993, Evidence of local ‘seisms’ of microscopic and macroscopic stress fluctuations during the deformation of packings of grains, in Powders and Grains, C. Thornton, ed., Balkema, Rotterdam, 173–178.Google Scholar
  130. 130.
    Mehrabadi, M. M., B. Loret, and S. Nemat-Nasser, 1993, Incremental constitutive relations for granular materials based on micromechanics, Proceedings of the Royal Society, London, A 441, 443–463.Google Scholar
  131. 131.
    Mehrabadi, M. M., S. Nemat-Nasser, and M. Oda, 1982, On statistical description of stress and fabric in granular materials, Int. Journal for Numerical and Analytical Methods in Geomechanics, 6, 95–108.MATHMathSciNetGoogle Scholar
  132. 132.
    Mindlin, R. D., 1949, Compliance of elastic bodies in contact, Journal of Applied Mechanics, ASME, 71, 259–268.MathSciNetGoogle Scholar
  133. 133.
    Mindlin, R. D., and H. Deresiewicz, 1953, Elastic spheres in contact under varying oblique forces, Journal of Applied Mechanics, ASME, 20, 327–344.MATHMathSciNetGoogle Scholar
  134. 134.
    Misra, A., 1995, Interfaces in particulate materials, Mechanics of geomaterial interfaces, A. P. S. Selvadurai and M. Boulon, Eds., Elsevier.Google Scholar
  135. 135.
    Monteiro Marques, M. D. P., 1993, Differential Inclusions, in Nonsmooth Mechanical Problems: Shocks and Dry Friction, Berlin, Germany.Google Scholar
  136. 136.
    Moreau, J. J., 1966, Quadratic programming in mechanics• dynamics of one-sided constraints, SIAM J. Control, 4, 153–158.MathSciNetGoogle Scholar
  137. 137.
    Moreau, J. J., 1988, Bounded variation in time, in Topics in Nonsmooth Mechanics, J. J. Moreau, P. D. Panagiotopoulos and G. Strang, Eds., Berlin, Germany, 1–74.Google Scholar
  138. 138.
    Moreau, J. J., 1988, Unilateral contact and dry friction in finite freedom dynamics, in Nonsmooth Mechanics and Applications, J. J. Moreau and P. D. Panagiotopoulos, Eds., CISM Courses and Lectures, 302, Springer-Verlag, Wien, New York, 1–82.Google Scholar
  139. 139.
    Moreau, J. J., 1993, New computation methods in granular dynamics, Proceedings of the 2nd International Conference on Micromechanics of Granular Media, Birmingham, C. Thornton, ed., Balkema, Rotterdam, The Netherlands, 227–232.Google Scholar
  140. 140.
    Moreau, J. J., 1994, Some numerical methods in multibody dynamics: application to granular materials, Eur. J. Mech. Solids, 13, 93–114.MATHMathSciNetGoogle Scholar
  141. 141.
    Moreau, J. J., 1995, Numerical experiments in granular dynamics: vibration-induced size segregation, in Contact Mechanics, M. Raous et al., Eds., Plenum Press, New York, 347–358.Google Scholar
  142. 142.
    Moreau, J. J., 1996, Numerical investigation, of shear zones in granular materials, Proceedings of the HLRZ-workshop on Friction, Arching and contact Dynamics, Jülich, Germany, October.Google Scholar
  143. 143.
    Mühlhaus, H. B., and I. Vardoulakis, 1987, The thickness of shear bands in granular materials, Géotechnique, 37, 271–283.Google Scholar
  144. 144.
    Mujinza, A., N. Bicanic, and D. R. J. Owen, 1993, BSD contact detection algorithm for discrete elements in 2D, Proceedings of the 2n d international conference on discrete element methods, Massachusetts Institute of Technology, J. R. Williams and G. W. Mustoe, Eds., March, 39–52.Google Scholar
  145. 145.
    Mustoe, G. G. W., M. Henriksen, and H. -P. Huttelmaier, Eds., 1989, Proceedings of the I rs` US Conference on Discrete Element Methods (DEM), Colorado School of Mines Press, Golden, CO.Google Scholar
  146. 146.
    Nakase, H., T. Annaka, F. Katahira, and T. Kyono, 1992, An application study of the distinct element method to plane strain compression tests, Soils and Foundations, in Japanese, 454, 55–64.Google Scholar
  147. 147.
    Nemat-Nasser, S., and M. M. Mehrabadi, 1983, Micromechanically based rate constitutive description for granular materials, Proceedings of International Conference on Constitutive Laws for Engineering Materials; Theory and Applications, Tucson, A2.Google Scholar
  148. 148.
    Nemat-Nasser, S., and M. M. Mehrabadi, 1984, Micromechanically based rate constitutive descriptions for granular materials, Mechanics of Engineering Materials, C.S. Desai and R.H. Gallagher, Eds, John Wiley and Sons, New York, 451–463.Google Scholar
  149. 149.
    Ng, T. -T. and R. Dobry, R., 1994, Numerical simulation of monotonic and cyclic loading of granular soil, Journal of Geotechnical Engineering, ASCE, 120 (2), 388403.Google Scholar
  150. 150.
    Ng, T. -T., 1992, A non-linear numerical model for soil mechanics, International Journal for Numerical and Analytical Methods in Geomechanics, 16, 247–263.Google Scholar
  151. 151.
    O’connor, R., J. Gill, and J. R. Williams, 1993, A linear complexity contact detection algorithm for multi-body analysis, Proceedings of the 2 “d international conference on discrete element methods, Massachusetts Institute of Technology, J. R. Williams and G. W. Mustoe, Eds., 53–64.Google Scholar
  152. 152.
    Oda, M., 1972, Deformation mechanism of sand in triaxial compression tests, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 12, 45–63.Google Scholar
  153. 153.
    Oda, M., 1972, Initial fabrics and their relations to mechanical properties of granular material, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 12, 18–36.Google Scholar
  154. 154.
    Oda, M., 1972, The mechanism of fabric changes during compressional deformation of sand, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 12, 1–17.Google Scholar
  155. 155.
    Oda, M., 1993, Micro-fabric and couple-stress in shear bands of granular materials, Proceedings of the 2 “d International Conference on Micromechanics of Granular Media, Birmingham, UK, C. Thornton, ed., 161–166.Google Scholar
  156. 156.
    Oda, M., and J. Konishi, 1974, Microscopic deformation mechanism of granular material in simple shear, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 14, 25–38.Google Scholar
  157. 157.
    Oda, M., J. Konishi, and S. Nemat-Nasser, 1980. Some experimentally based fundamental results on the mechanical behavior of granular materials, Géotechnique, 30, 479–495.Google Scholar
  158. 158.
    Oda, M., K. Iwashita, and T. Kakiuchi, 1997, Importance of particle rotation in the mechanics of granular materials, Proceedings of the 3` d International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 207–210.Google Scholar
  159. 159.
    Oda, M., Konishi, J, and S. Nemat-Nasser, 1982. Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling, Mechanics of Materials, 1, 269–283.Google Scholar
  160. 160.
    Papadrakakis, M., 1981, A method for the automatic evaluation of the dynamic relaxation parameters, Computer methods in applied mechanics and engineering, 25, 35–48.MATHMathSciNetGoogle Scholar
  161. 161.
    Parikh, P. V., 1967, The shearing behavior of sand under axisymmetric loading, PhD thesis, University of Manchester, UK.Google Scholar
  162. 162.
    Park, K. C., and P. Underwood, 1980, A variable-step central difference method for structural dynamic analysis–Part 1. Theoretical aspects, Computer methods in applied mechanics and engineering, 22, 241–258.MATHMathSciNetGoogle Scholar
  163. 163.
    Penman, A. D. M., 1953, Shear characteristics of saturated silts measured in triaxial compression, Géotechnique, 3 (4), 312–328.Google Scholar
  164. 164.
    Pfeiffer, F., and C. Glocker, 1966, Multibody Dynamics with Unilateral Contacts, John Wiley Sons, New York.Google Scholar
  165. 165.
    Procter, D. C., and R. R. Barton, 1974, Measurement of the angle of interparticle friction, Géotechnique, 24 (4), 581–604.Google Scholar
  166. 166.
    Radjai, F., M. Jean, J. J. Moreau and S. Roux, 1996, Force distributions in dense two-dimensional granular systems, Physics Review Letters, 77, 274.Google Scholar
  167. 167.
    Reynolds, O., 1885, On the dilatancy of media composed of rigid particles in contact, with experimental illustration, Philosophical Magazine, Series 5, 20, 469–481.Google Scholar
  168. 168.
    Reynolds, O., 1895, On rolling friction, Phil. Trans. Royal Society, 166, 155.Google Scholar
  169. 169.
    Rice, J. R., 1976, The localization of plastic deformation, Theoretical and Applied Mechanics, Proceedings of the 14th IUTAM Congress, W.T. Koiter, ed., North Holland, New York, 207–220.Google Scholar
  170. 170.
    Roscoe, K.H. and A.N. Schofield, 1964. Discussion on P.W. Rowe’s paper, Stressdilatancy, earth pressures and slopes (Proc Paper 3507, May 1963), J. Soil mechanics and Foundation Engineering, ASCE, 90 (1), 136.Google Scholar
  171. 171.
    Rosenberg, L., and A. P. S. Selvadurai, 1981, Micromechanical definition of the cauchy stress tensor for particulate media, In Mechanics of Structured Media, A. P. S. Selvadurai, ed., Elsevier, Amsterdam, The Netherlands, 469–486.Google Scholar
  172. 172.
    Rothenburg, L., and R. J. Bathurst, 1989, Analytical study of induced anisotropy in idealized granular materials, Géotechnique, 39, 601–614.Google Scholar
  173. 173.
    Rothenburg, L., and R. J. Bathurst, 1991, Numerical simulation of idealized granular assemblies with plane elliptical particles, Computers and Geotechnics, 11, 315–329.Google Scholar
  174. 174.
    Rothenburg, L., and R. J. Bathurst, 1992, Micromechanical features of granular assemblies with planar elliptical particles, Géotechnique, 42, 79–95.Google Scholar
  175. 175.
    Rowe, P.W., 1962, The stress-dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. Roy. Soc. London, A269, 500.Google Scholar
  176. 176.
    Rudnicki, J.W., and J. R. Rice, 1975, Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371–394.Google Scholar
  177. 177.
    Satake, M., 1978, Constitution of mechanics of granular materials through graph representation, in Theoretical and Applied Mechanics 26, University of Tokyo Press, 257.Google Scholar
  178. 178.
    Satake, M., 1982, Fabric tensor in granular materials, Proceedings of the IUTAM symposium on deformation and failure of granular materials, Delft, Balkema Publishers, P.A. Vermeer H.J, Luger Eds., 63–68.Google Scholar
  179. 179.
    Savage, S. B., and D. J. Jeffrey, 1981, The stress tensor in a granular flow at high shear rate, J. Fluid Mech., 110, 255–272.MATHGoogle Scholar
  180. 180.
    Schneebli, G., 1955, Une analogie mécanique pour les terres sans cohésion, Proceedings of the Academy of Sciences, Paris, France, 243, p. 256.Google Scholar
  181. 181.
    Schofield, A. N., and C. P. Wroth., 1968, Critical State Soil Mechanics. Mc GrawHill, London, UK.Google Scholar
  182. 182.
    Shi, G. -H, 1993, Block system modeling by discontinuous deformation analysis, Topics in engineering Volume 11, C. A. Brebbia and J. J. Connor, Eds., Computational mechanics Publication, Southampton, UK.Google Scholar
  183. 183.
    Shi, G.-H., and R. E. Goodman, 1988, Discontinuous deformation analysis–a new method for computing stress, strain and sliding of block systems, in Key questions in rock mechanics, Cundall et al., Eds., Balkema, Rotterdam, the Netherlands, 381–393.Google Scholar
  184. 184.
    Shi, G.-H., and R. E. Goodman, 1989, Generalization of two-dimensional discontinuous deformation analysis for forward modeling, International Journal for Numerical and Analytical Methods in Geomechanics, 13 (4), 359–380.MATHGoogle Scholar
  185. 185.
    Singer I. L., and H. M. Pollock, 1992, Fundamentals of friction: Macroscopic and microscopic processes, Kluwer Academic, Dordrecht, the Netherlands.Google Scholar
  186. 186.
    Skinner, A. E., 1969, A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles, Géotechnique, 19 (1) 150–157.Google Scholar
  187. 187.
    Southwell, R. V. 1940, Relaxation methods in engineering sciences, Oxford University Press, Oxford, UK.Google Scholar
  188. 188.
    Sternberg, E., 1968, Couple stress and singular stress concentrations in elastic solid, in Mechanics of generalized continua, Proceedings of the IUTAM Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocation with Applications, Edited by E. Kroner, Springer, New York.Google Scholar
  189. 189.
    Subbash, S. Nemat-Nasser, M. M. Mehrabadi, and H. M. Shodja, 1991. Experimental investigation of fabric-stress relations in granular materials, Mechanics of Materials, 11, 87–106.Google Scholar
  190. 190.
    Sudji, Y., T. Kawaguchi, and T. Tanaka, 1993, Discrete particle simulation of two-dimensional fluidized bed, Powder Technology, 77, 79–87.Google Scholar
  191. 191.
    Sudji, Y., T. Tanaka, and T. Ishida, 1992, Lagrangian numerical simulation of plug flow of cohesionless particles in an horizontal pipe, Powder Technology, 71, 239250.Google Scholar
  192. 192.
    Sukla, A., and H. P. Rossmanith, 1982, A photoelastic investigation of dynamic load transfer in granular media, Acta Mechanica, 42, 211–225.Google Scholar
  193. 193.
    Sun, G., and C. Thornton, 1994, Computer simulation of 3D quasi-static shear deformation of particulate media, Proceedings of I rst International Particle technology Forum, American Institute of Chemical Engineers, Denver, CO, 24–29.Google Scholar
  194. 194.
    Supel, J. A., 1985, Local destruction of granular media caused by crushing a single grain, Archives of Mechanics, 37 (4–5), 535–548.Google Scholar
  195. 195.
    Tabor, D., 1955, The mechanism of rolling friction: the elastic range, Proc. Royal Society, A251, 198–220.Google Scholar
  196. 196.
    Tamura, S., and T. Aizawa, 1993, Mechanical behavior of powder particle on the applied vibration, International journal of modern physics, 7 (9–10), 1829–1838.Google Scholar
  197. 197.
    Tatsuoka, F., S. Nakamura, C., Huang, and K. Tani, 1990, Strength anisotropy and shear band direction in plane strain tests on sand, Soils and Foundations, 30, 3554.Google Scholar
  198. 198.
    Taylor, R. L., 1977, Computer procedures for finite element analysis. Ch. 24, in: O.C. Zienkiewicz, The finite element method, 3rd ed., McGraw-Hill Book Co., London, England.Google Scholar
  199. 199.
    Thornton, C., 1979, The conditions of failure of a face-centered cubic array of uniform rigid spheres, Géotechnique, 29, 441–459.Google Scholar
  200. 200.
    Thornton, C., 1994, Micromechanics of elastic sphere assemblies during 3D shear, Proceedings of Mechanics and Statistical Physics of Particulate Materials, Institute for Mechanics and Materials, La Jolla, CA, June, 64–67.Google Scholar
  201. 201.
    Thornton, C., and C. W. Randall, 1988, Applications of theoretical contact mechanics to solid particle system simulation, in Micromechanics of Granular Materials, M. Satake and J. T. Jenkins, Eds., Elsevier Science Publishers, Amsterdam, Netherlands, 133–142.Google Scholar
  202. 202.
    Thornton, C., and G. Sun, 1994, Numerical simulation of general 3D quasi-static shear deformation of granular media, Proceedings of Numerical Methods in Geotechnical Engineering, I. M. Smith, ed., Balkema, Rotterdam, Netherlands, 143–148.Google Scholar
  203. 203.
    Thornton, C., ed., 1993, Proceedings of the 2“ d International Conference on Powders and Grains, Birmingham, UK, Balkema, Rotterdam, the Netherlands.Google Scholar
  204. 204.
    Thurston, C. W., and H. Deresiewicz, 1959, Analysis of a compression test of a model of a granular medium, Journal of Applied Mechanics, ASME, 251–258.Google Scholar
  205. 205.
    Timoshenko, S., and J. N. Goodier, 1951, Theory of elasticity, 3’d edition, McGraw-Hill, New York, NY.Google Scholar
  206. 206.
    Ting, J. M., 1992, A robust algorithm for ellipse-based discrete element modeling of granular materials, Computers and Geotechnics. Google Scholar
  207. 207.
    Ting, J. M., and B. T. Corkum, 1992, A computational laboratory for discrete element geomechanics, Journal of Computers in Civil Engineering, ASCE, 6, 129–146.Google Scholar
  208. 208.
    Ting, J. M., B. T. Corkum, C. R. Kauffman, and C. Greco, 1989, Discrete numerical model for soil mechanics, Journal of Geotechnical Engineering, ASCE, 115, 379–398.Google Scholar
  209. 209.
    Ting, J. M., M. Khawaja, L. M. Meachum, and J. D. Rowell, 1993, An ellipse-based discrete element model for granular materials, International Journal for Numerical and Analytical Methods in Geomechanics, 17, 603–623.MATHGoogle Scholar
  210. 210.
    Tong, P. Y. L., 1970, Plane strain deformation of sands, PhD thesis, University of Manchester, UK.Google Scholar
  211. 211.
    Trent, B. C. and L. G. Margolin, 1992, A numerical laboratory for granular solids, Engineering Computations, 9, 191–197.Google Scholar
  212. 212.
    Truesdell, C., 1985, The Elements of Continuum Mechanics, Springer-Verlag, Berlin, Germany.Google Scholar
  213. 213.
    Tschebotarioff, G. P., and J. D. Welch, 1948, lateral earth pressures and friction between soil minerals, Proceedings of the 2 “d International Conference on Soil Mechanics and Foundations, Rotterdam, VII, 135–138.Google Scholar
  214. 214.
    Tsuji, Y., 1997, Discrete particle simulation of dispersed gas-solid flows, Proceedings of the 3 ’d International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 25–30.Google Scholar
  215. 215.
    Underwood, P., 1983, Dynamic relaxation, in Computational methods for transient analysis, T. Belitschko and T.J.R. Hughes, Eds., North Holland, Amsterdam, Holland, 245–265.Google Scholar
  216. 216.
    Underwood, P., and K. C. Park, 1980, A variable-step central difference method for structural dynamic analysis, Part 2. Implementation and performance evaluation, Computer methods in applied mechanics and engineering, 23, 259–279.MATHMathSciNetGoogle Scholar
  217. 217.
    Vardoulakis, I. and B. Graf, 1985, Calibration of constitutive models for granular materials using data from biaxial experiments, Géotechnique, 35, 299–317.Google Scholar
  218. 218.
    Vardoulakis, I., 1988, Theoretical and experimental bounds for shear-band bifurcation strain in biaxial tests on dry sand, Res Mechanica, 23, 239–259.Google Scholar
  219. 219.
    Vermeulen, P. J., and K. L. Johnson, 1964, Contact of nonspherical elastic bodies transmitting tangential forces, Journal of Applied Mechanics, June, 338–340.Google Scholar
  220. 220.
    Walton, O. R., 1980, Particle dynamics modeling of geological materials, Lawrence Livermore National Laboratory, Report UCRL-52915.Google Scholar
  221. 221.
    Walton, O. R., 1993, Numerical simulation of inelastic, frictional particle-particle interactions, in Particulate two-phase flow, M. C. Roco, ed., Butterworth Heinemann, Boston, 884–910.Google Scholar
  222. 222.
    Walton, O. R., and R. L. Braun, 1986, Stress calculations for assemblies of inelastic spheres in uniform shear, Acta Mechanica, 63, 73–86.Google Scholar
  223. 223.
    Walton, O. R., and R. L. Braun, 1986, Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks, Journal of Rheology, 30, 949–980.Google Scholar
  224. 224.
    Walton, O. R., R. L. Braun, R. G. Mallon, and D. M. Cervelli, 1988, Particle-dynamics calculations of gravity flows of inelastic, frictional sphere, Micromechanics of granular materials, M. Satake and J. T. Jenkins, Eds., Elsevier Science Publishers, Amsterdam, 153–161.Google Scholar
  225. 225.
    Weber, J., 1996, Recherches concernant les contraintes intergranulaires dans les milieux pulverulents, Cahiers du Groupe Français de Rhéologie, 2, 161–170 (see also Bulletin de Liaison des Ponts et Chaussées 20, 3–1 to 3–20).Google Scholar
  226. 226.
    Wells, J. C., 1997, Contact of rough elastic spheres: a simplified analysis, Proceedings of the 3rd International Conference on Powders and Grains, Durham, NC, R. P. Behringer and J. T. Jenkins, Eds., Balkema, Rotterdam, the Netherlands, 311–314.Google Scholar
  227. 227.
    Williams, J. R., and G. G. W. Mustoe, 1987, Modal methods for the analysis of discrete systems, Computers and Geotechnics, 4, 1–19.Google Scholar
  228. 228.
    Williams, J. R., and G. G. W. Mustoe, Eds., 1993, Proceedings of the 2 nd International Conference on Discrete Element Methods (DEM), The Massachusetts Institute of Technology, Intelligent Engineering System Laboratory Publication, Cambridge, MA.Google Scholar
  229. 229.
    Witters, J., and D. Duymelinck, 1986, Rolling and sliding resistive forces on balls moving on a flat surface, American Journal of Physics, 54 (1), 80–83.Google Scholar
  230. 230.
    Zhuang, X. and J. D. Goddard, 1993, Computer simulation and experiments on the quasi-static mechanics and transport properties of granular materials, Res. Rep. GR 93–01, University of California, San Diego, CA, October.Google Scholar
  231. 231.
    Zhuang, X., K. Didwania, and J. D. Goddard, 1995, Simulation of the quasi-static mechanics and scalar transport properties of ideal granular assemblages, Journal of computational physics, 121, 331–346.MATHGoogle Scholar
  232. 232.
    Zienkiewicz, O. C., and R. L. Taylor, 1991, The finite element method, Vol. 2, McGraw-Hill, London, UK.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • J. P. Bardet
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations