Experimental Behaviour of Granular Materials

  • P. Y. Hicher
Part of the International Centre for Mechanical Sciences book series (CISM, volume 385)


Granular materials are present in different branches of engineering such as Civil Engineering, Chemistry, Metallurgy, Pharmacy, Electrical Engineering. The shape, the size, the constituents of the grains can be very diverse, as can also be the mechanical loading to which they are submitted. We can for example study the stability of rockfill dams or the compaction of submicronic powders at very high stresses. These materials, in principle different from each other, have in fact common features due to their granular structure. In particular, their mechanical properties are strongly dependent on the mean stress (the first invariant of the stress tensor). When submitted to small mean stresses, the shear strength is also very small and the granular material can flow almost like a liquid. This is the case for example in silos. On the other hand, when the mean stress is high, the granular material will be able to bear high loading such as in the case of Civil Engineering infrastructures.


Granular Material Grain Size Distribution Strain Amplitude Void Ratio Triaxial Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biarez, J., Hicher, P.Y. (1994) Elementary Mechanics of Soil Behaviour. Saturated remoulded Soils, Ed. BalkemaGoogle Scholar
  2. 2.
    Darve, F., Richer, P.Y., Reynouard, J.M. (1995) Les géomatériaux: théories, expériences et modèles, Ed. HermèsGoogle Scholar
  3. 3.
    Al Mahmoud, M. (1997) Etude en laboratoire du comportement des sables sous faibles contraintes, thèse de Doctorat, Univ. Des SC. et Techn. de LilleGoogle Scholar
  4. 4.
    Lancelot, L. (1990) Etude expérimentale et modélisation du comportement de poudres de l’industrie chimique, thèse de Doctorat, Univ. Des Sc. et des Techn. de LilleGoogle Scholar
  5. 5.
    Luong, M.P. (1980) Stress-strain aspects of cohesionless soils under cyclic and transient loading, Int. Symp. on Soils under cyclic and transient loading, Swansea, pp. 353–376Google Scholar
  6. 6.
    Kim, M.S. (1995) Etude expérimentale du comportement méfanique des matériaux granulaires sous fortes contraintes, thèse de Doctorat, Ecole Centrale de ParisGoogle Scholar
  7. 7.
    Mosbah, P. (1995) Etude expérimentale et modélisation du comportement des poudres métalliques au cours du compactage en matrice fermée, thèse de Doctorat, Univ. Joseph Fourier, Grenoble IGoogle Scholar
  8. 8.
    Bard, E. (1993) Comportement des matériaux granulaires secs et à liants hydrocarbonés, thèse de Doctorat, Ecole Centrale de ParisGoogle Scholar
  9. 9.
    Duchesne, A. (1997) Comportement de matériaux granulaires secs au triaxial, rapport de recherches, Ecole Centrale de ParisGoogle Scholar
  10. 10.
    Luong, M.P. (1989) Rhéologie des grains agro-alimentaires ensilés, Construction métallique, n° 2Google Scholar
  11. 11.
    Rowe, P.W. (1962) The stress dilatancy relations for static equilibrium of an assembly of particles in contact, Proc. Royal Society, London, Series A, Vol. 269, pp. 500–527CrossRefGoogle Scholar
  12. 12.
    Ishihara, K., Towhata, I. (1983) Cyclic behaviour of sand during rotation of principal.axes, Mechanics of Granular Materials, Ed. Elsevier, pp. 55–73Google Scholar
  13. 13.
    Lanier, J. (1994) Experimental behaviour of soils, 6th european automn school on constitutive equations for geomaterials, ALERT GeomaterialsGoogle Scholar
  14. 14.
    Lee, K., Seed,.B. (1967) Undrained strength characteristics of sand, Proc. ASCE, Vol. 93, No. SM6, pp. 333–360Google Scholar
  15. 15.
    Canou, J., El Hachem, M., Kattan, A. (1990) Propriétés de liquéfaction statique d’un sable lâehe, 25° Colloque du Groupe Français de Rhéologie, GrenobleGoogle Scholar
  16. 16.
    Biarez, J., Wiendick, K. (1963) La comparaison qualitative entre l’anisotropie mécanique et l’anisotropie de structure des milieux pulvérulents, CRAS, 256, pp. 12171220Google Scholar
  17. 17.
    Konishi, J., Oda, M., Nemat-Nasser, S. (1983) Induced anisotropy in assemblies of oval cross-sectional rods in biaxial compression, Mechanics of Granulai Materials, Ed. Elsevier, pp. 31–40Google Scholar
  18. 18.
    Hicher, P.Y., Rahma, A. (1994) Micro-macro correlations in granular media. Application to the modelling of sands, Eur. J. of Mech., A: Solids 13, n° 6, pp. 763–781Google Scholar
  19. 19.
    Lade, P.V., Duncan, J.M. (1973) Cubical triaxial test on cohesionless soil, ASCE, SM 10, pp. 793–811Google Scholar
  20. 20.
    Zitouni, Z. (1988) Comportement tridimensionnel des sables, thèse de Doctorat, Univ. Joseph Fourier, Grenoble IGoogle Scholar
  21. 21.
    Ochai, H., Lade P.V. (1983) Three-dimensional behavior of sand with anisotropic fabric, J. of Geotechnical Eng., Vol. 109,No 10, pp. 1313–1328CrossRefGoogle Scholar
  22. 22.
    Wong, R.K.S., Arthur, J.R.F. (1985) Induced and inherent anisotropy in sand, Geotechnique 35, No 4, pp. 471–481CrossRefGoogle Scholar
  23. 23.
    Sture, S., Budiman, J.S., Ontuna, A.K., Ko, H.Y. (1987) Directional shear cell experiments on a dry cohesionless soil, Geotechnical Testing J. 10, No 2, pp. 71–79CrossRefGoogle Scholar
  24. 24.
    Kharchafi, M. (1988) Contribution à l’étude du comportement des matériaux granulaires sous sollicitations rotationnelles, thèse de Doctorat, Ecole Centrale de ParisGoogle Scholar
  25. 25.
    Bishop, A.W., Bligth, G.E. (1963) Some aspects of effective stress in saturated and unsaturated soils, Geotechnique, No 3, pp. 177–197CrossRefGoogle Scholar
  26. 26.
    Taibi, S. (1994) Comportement mécanique et hydraulique des sols soumis à une pression interstitielle négative. Etude expérimentale et modélisation, thèse de Doctorat, Ecole Centrale de ParisGoogle Scholar
  27. 27.
    Hicher, P.Y., Kim M.S., Rahma, A. (1995) Experimental evidence and modelling of grain breakage influence on mechanical behaviour of granular media, Int. Workshop on homogeneisation, theory of migration and granular bodies, Gdansk, pp. 125–133Google Scholar
  28. 28.
    Le Long (1968) Contribution à l’étude des propriétés mécaniques des sols sous fortes pressions, Thèse de Docteur Ingénieur, Univ. De GrenobleGoogle Scholar
  29. 29.
    Biarez, J., Hicher, P.Y. (1997) Influence de la granulométrie et de son évolution par ruptures de grains sur le comportement mécanique de matériaux granulaires, Revue Française de Génie Civil, Vol. 1, n° 4Google Scholar
  30. 30.
    Hicher, P.Y. (1996) Elastic properties of soils, J. Geot. Eng., ASCE, Vol. 122, No 8, pp. 641–648CrossRefGoogle Scholar
  31. 31.
    Hardin, B.O., Richard, F.E. (1963) Elastic wave velocities in granular soils, J. Soil Mech. And Found. Div., ASCE 89, SM1, pp. 33–65Google Scholar
  32. 32.
    Boelle, J.L. (1983) Mesure en régime dynamique des propriétés mécaniques des sols aux faibles déformations, thèse de Docteur Ingénieur, Ecole Centrale de ParisGoogle Scholar
  33. 33.
    Drnevich, V.P., Hardin, B.O., Shippy, D.J. (1977) Modulus and damping of soils by the resonant column, Dyn. Geot. Testing, ASTM STP 654, ASTM, Philadelphia, pp. 91125Google Scholar
  34. 34.
    Seed, H.B., Idriss, I.M. (1970) Soil moduli and damping factors for dynamic responses analysis, report No EERC 75–29, Eathquake Eng. Research Center, Univ. of California, BerkeleyGoogle Scholar
  35. 35.
    Charif, K., Hicher, P.Y. (1991) Influence of anisotropy on elastic and cyclic properties of sand, 5th Int. Conf. On Soil Dyn. and Earthquake Eng., KarlsruheGoogle Scholar
  36. 36.
    D’Appolonia, E.P. (1970) Dynamic Loading, J; Soil Mech. And Found. Div., ASCE 96, SM1, pp. 4ç-’72Google Scholar
  37. 37.
    Wong, R.K.S., Arthur, J.R.F. (1986) Sand sheared by stresses with cyclic variations in direction, Geotechnique 36, No 2, pp. 215–226CrossRefGoogle Scholar
  38. 38.
    Joer, H.A. (1991) ly2s: une nouvelle machine de cisaillement pour l’étude du comportement des milieux granulaires, thèse de Doctorat, Univ. Joseph Fourier, Grenoble IGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • P. Y. Hicher
    • 1
  1. 1.Central School of NantesNantesFrance

Personalised recommendations