Skip to main content

Experimental Behaviour of Granular Materials

  • Conference paper
Behaviour of Granular Materials

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 385))

Abstract

Granular materials are present in different branches of engineering such as Civil Engineering, Chemistry, Metallurgy, Pharmacy, Electrical Engineering. The shape, the size, the constituents of the grains can be very diverse, as can also be the mechanical loading to which they are submitted. We can for example study the stability of rockfill dams or the compaction of submicronic powders at very high stresses. These materials, in principle different from each other, have in fact common features due to their granular structure. In particular, their mechanical properties are strongly dependent on the mean stress (the first invariant of the stress tensor). When submitted to small mean stresses, the shear strength is also very small and the granular material can flow almost like a liquid. This is the case for example in silos. On the other hand, when the mean stress is high, the granular material will be able to bear high loading such as in the case of Civil Engineering infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Biarez, J., Hicher, P.Y. (1994) Elementary Mechanics of Soil Behaviour. Saturated remoulded Soils, Ed. Balkema

    Google Scholar 

  2. Darve, F., Richer, P.Y., Reynouard, J.M. (1995) Les géomatériaux: théories, expériences et modèles, Ed. Hermès

    Google Scholar 

  3. Al Mahmoud, M. (1997) Etude en laboratoire du comportement des sables sous faibles contraintes, thèse de Doctorat, Univ. Des SC. et Techn. de Lille

    Google Scholar 

  4. Lancelot, L. (1990) Etude expérimentale et modélisation du comportement de poudres de l’industrie chimique, thèse de Doctorat, Univ. Des Sc. et des Techn. de Lille

    Google Scholar 

  5. Luong, M.P. (1980) Stress-strain aspects of cohesionless soils under cyclic and transient loading, Int. Symp. on Soils under cyclic and transient loading, Swansea, pp. 353–376

    Google Scholar 

  6. Kim, M.S. (1995) Etude expérimentale du comportement méfanique des matériaux granulaires sous fortes contraintes, thèse de Doctorat, Ecole Centrale de Paris

    Google Scholar 

  7. Mosbah, P. (1995) Etude expérimentale et modélisation du comportement des poudres métalliques au cours du compactage en matrice fermée, thèse de Doctorat, Univ. Joseph Fourier, Grenoble I

    Google Scholar 

  8. Bard, E. (1993) Comportement des matériaux granulaires secs et à liants hydrocarbonés, thèse de Doctorat, Ecole Centrale de Paris

    Google Scholar 

  9. Duchesne, A. (1997) Comportement de matériaux granulaires secs au triaxial, rapport de recherches, Ecole Centrale de Paris

    Google Scholar 

  10. Luong, M.P. (1989) Rhéologie des grains agro-alimentaires ensilés, Construction métallique, n° 2

    Google Scholar 

  11. Rowe, P.W. (1962) The stress dilatancy relations for static equilibrium of an assembly of particles in contact, Proc. Royal Society, London, Series A, Vol. 269, pp. 500–527

    Article  Google Scholar 

  12. Ishihara, K., Towhata, I. (1983) Cyclic behaviour of sand during rotation of principal.axes, Mechanics of Granular Materials, Ed. Elsevier, pp. 55–73

    Google Scholar 

  13. Lanier, J. (1994) Experimental behaviour of soils, 6th european automn school on constitutive equations for geomaterials, ALERT Geomaterials

    Google Scholar 

  14. Lee, K., Seed,.B. (1967) Undrained strength characteristics of sand, Proc. ASCE, Vol. 93, No. SM6, pp. 333–360

    Google Scholar 

  15. Canou, J., El Hachem, M., Kattan, A. (1990) Propriétés de liquéfaction statique d’un sable lâehe, 25° Colloque du Groupe Français de Rhéologie, Grenoble

    Google Scholar 

  16. Biarez, J., Wiendick, K. (1963) La comparaison qualitative entre l’anisotropie mécanique et l’anisotropie de structure des milieux pulvérulents, CRAS, 256, pp. 12171220

    Google Scholar 

  17. Konishi, J., Oda, M., Nemat-Nasser, S. (1983) Induced anisotropy in assemblies of oval cross-sectional rods in biaxial compression, Mechanics of Granulai Materials, Ed. Elsevier, pp. 31–40

    Google Scholar 

  18. Hicher, P.Y., Rahma, A. (1994) Micro-macro correlations in granular media. Application to the modelling of sands, Eur. J. of Mech., A: Solids 13, n° 6, pp. 763–781

    Google Scholar 

  19. Lade, P.V., Duncan, J.M. (1973) Cubical triaxial test on cohesionless soil, ASCE, SM 10, pp. 793–811

    Google Scholar 

  20. Zitouni, Z. (1988) Comportement tridimensionnel des sables, thèse de Doctorat, Univ. Joseph Fourier, Grenoble I

    Google Scholar 

  21. Ochai, H., Lade P.V. (1983) Three-dimensional behavior of sand with anisotropic fabric, J. of Geotechnical Eng., Vol. 109,No 10, pp. 1313–1328

    Article  Google Scholar 

  22. Wong, R.K.S., Arthur, J.R.F. (1985) Induced and inherent anisotropy in sand, Geotechnique 35, No 4, pp. 471–481

    Article  Google Scholar 

  23. Sture, S., Budiman, J.S., Ontuna, A.K., Ko, H.Y. (1987) Directional shear cell experiments on a dry cohesionless soil, Geotechnical Testing J. 10, No 2, pp. 71–79

    Article  Google Scholar 

  24. Kharchafi, M. (1988) Contribution à l’étude du comportement des matériaux granulaires sous sollicitations rotationnelles, thèse de Doctorat, Ecole Centrale de Paris

    Google Scholar 

  25. Bishop, A.W., Bligth, G.E. (1963) Some aspects of effective stress in saturated and unsaturated soils, Geotechnique, No 3, pp. 177–197

    Article  Google Scholar 

  26. Taibi, S. (1994) Comportement mécanique et hydraulique des sols soumis à une pression interstitielle négative. Etude expérimentale et modélisation, thèse de Doctorat, Ecole Centrale de Paris

    Google Scholar 

  27. Hicher, P.Y., Kim M.S., Rahma, A. (1995) Experimental evidence and modelling of grain breakage influence on mechanical behaviour of granular media, Int. Workshop on homogeneisation, theory of migration and granular bodies, Gdansk, pp. 125–133

    Google Scholar 

  28. Le Long (1968) Contribution à l’étude des propriétés mécaniques des sols sous fortes pressions, Thèse de Docteur Ingénieur, Univ. De Grenoble

    Google Scholar 

  29. Biarez, J., Hicher, P.Y. (1997) Influence de la granulométrie et de son évolution par ruptures de grains sur le comportement mécanique de matériaux granulaires, Revue Française de Génie Civil, Vol. 1, n° 4

    Google Scholar 

  30. Hicher, P.Y. (1996) Elastic properties of soils, J. Geot. Eng., ASCE, Vol. 122, No 8, pp. 641–648

    Article  Google Scholar 

  31. Hardin, B.O., Richard, F.E. (1963) Elastic wave velocities in granular soils, J. Soil Mech. And Found. Div., ASCE 89, SM1, pp. 33–65

    Google Scholar 

  32. Boelle, J.L. (1983) Mesure en régime dynamique des propriétés mécaniques des sols aux faibles déformations, thèse de Docteur Ingénieur, Ecole Centrale de Paris

    Google Scholar 

  33. Drnevich, V.P., Hardin, B.O., Shippy, D.J. (1977) Modulus and damping of soils by the resonant column, Dyn. Geot. Testing, ASTM STP 654, ASTM, Philadelphia, pp. 91125

    Google Scholar 

  34. Seed, H.B., Idriss, I.M. (1970) Soil moduli and damping factors for dynamic responses analysis, report No EERC 75–29, Eathquake Eng. Research Center, Univ. of California, Berkeley

    Google Scholar 

  35. Charif, K., Hicher, P.Y. (1991) Influence of anisotropy on elastic and cyclic properties of sand, 5th Int. Conf. On Soil Dyn. and Earthquake Eng., Karlsruhe

    Google Scholar 

  36. D’Appolonia, E.P. (1970) Dynamic Loading, J; Soil Mech. And Found. Div., ASCE 96, SM1, pp. 4ç-’72

    Google Scholar 

  37. Wong, R.K.S., Arthur, J.R.F. (1986) Sand sheared by stresses with cyclic variations in direction, Geotechnique 36, No 2, pp. 215–226

    Article  Google Scholar 

  38. Joer, H.A. (1991) ly2s: une nouvelle machine de cisaillement pour l’étude du comportement des milieux granulaires, thèse de Doctorat, Univ. Joseph Fourier, Grenoble I

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Hicher, P.Y. (1998). Experimental Behaviour of Granular Materials. In: Cambou, B. (eds) Behaviour of Granular Materials. International Centre for Mechanical Sciences, vol 385. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2526-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2526-7_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82920-2

  • Online ISBN: 978-3-7091-2526-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics