Modelling of Panel Structures

  • C. Meyer
  • J. Blaauwendraad
  • P. H. Feenstra
  • R. de Borst
Part of the International Centre for Mechanical Sciences book series (CISM, volume 346)


The terms “panel structures” and “planar structures” are used interchangeably to designate two-dimensional structural elements that are loaded primarily in their own plane. They include walls, deep beams, and to some extent also shell elements that are subjected to only membrane stresses.


Compressive Strength Plain Concrete Biaxial Compression Panel Structure Deep Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    Park, R. and T. Paulay: Reinforced Concrete Structures, John Wiley and Sons, New York 1975.CrossRefGoogle Scholar
  2. 3.2
    Oesterle, R.G. et al: Earthquake Resistant Structural Walls — Tests of Isolated Walls, Portland Cement Association, Skokie, IL, Nov. 1976.Google Scholar
  3. 3.3
    Oesterle, R.G. et al: Earthquake Resistant Structural Walls — Tests of Isolated Walls, Phase II, Portland Cement Association, Skokie, IL, Oct. 1979.Google Scholar
  4. 3.4
    Vecchio, F. and M.P. Collins. The Response of Reinforced Concrete to In-Plane Shear and Normal Stresses, Dept. of Civil Engin., University of Toronto, Publication No. 82–03, March 1982.Google Scholar
  5. 3.5
    Collins, M.P., F.J. Vecchio, and G. Mehlhorn: An international competition to predict the response of reinforced concrete panels, Canadian Journal of Civil Engineering, 12 (1985), no 3, 624–644.CrossRefGoogle Scholar
  6. 3.6
    Stevens,N.J., S.M. Uzumeri,and M.P. Collins: Analytical Modelling of Reinforced Concrete Subjected to Monotonic and Reversed Loadings“, Dept. of Civil Engin., University of Toronto, Publication No. 87–1, January 1987.Google Scholar
  7. 3.7
    Stevens, N.J., S.M. Uzumeri, and M.P. Collins. Reinforced concrete subjected to reversed cyclic shear — experiments and constitutive model, ACI Structural Journal, March-April 1991.Google Scholar
  8. 3.8
    Nilson, A. H., ed.: Finite Element Analysis of Reinforced Concrete, Special Publication, ASCE, New York, 1982.Google Scholar
  9. 3.9
    Meyer, C. and H. Okamura, eds: Finite Element Analysis of Reinforced Concrete Structures, Special Publication, ASCE, New York, 1986.Google Scholar
  10. 3.10
    Gupta, A.K. and R. Maestrini: Post-cracking behavior of membrane reinforced concrete elements including tension-stiffening, ASCE, Journal of Structural Engineering, 115 (1989), no 4.Google Scholar
  11. 3.11
    Vecchio, F.J. and M.P. Collins: The modified compression field theory for reinforced concrete elements subjected to shear, ACI Journal, March-April 1986.Google Scholar
  12. 3.12
    Simo, J.C. and J.W. Ju: Strain-and stress-based continuum damage models — II. Computational aspects, Int. J. Solids and Structures 23 (1987), no 7, 841–869.CrossRefMATHGoogle Scholar
  13. 3.13
    Xiong, S.: Anisotropic Damage Model for Inelastic Solids, Ph.D. Thesis, Columbia University, 199Google Scholar
  14. 3.14
    Paskova, T.I.: Low-Cycle Fatigue Behavior of Concrete With and Without Fiber Reinforcement, Ph.D. Thesis, Columbia University, 1994.Google Scholar
  15. 3.15
    Rots, J.G.: Computational Modelling of Concrete Fracture, Dissertation, Delft University of Technology, The Netherlands, 1988.Google Scholar
  16. 3.16
    Vonk, R.A.: Softening of Concrete Loaded in Compression, Dissertation, Eindhoven University of Technology, The Netherlands, 1992.Google Scholar
  17. 3.17
    CEB-FIP Model Code 1990, Bulletin d’Information, Comité Euro-International du Béton, 1990.Google Scholar
  18. 3.18
    Kupfer, H.B. and K.H. Gerstle: Behavior of concrete under biaxial stresses, ASCE, J. Eng. Mech. 99 (1973), No. 4, 853–866.Google Scholar
  19. 3.19
    Feenstra, P.H. and R. De Borst: Aspects of robust computational modelling for plain and reinforced concrete, Heron 38 (1993), no. 4.Google Scholar
  20. 3.20
    Cervenka, V., R. Pukl, and R. Eligehausen: Computer simulation of anchoring technique in reinforced concrete beams, in: Computer Aided Analysis and Design of Concrete Structures, (eds. N. Bicanic et al.), Pineridge Press, Swansea, 1990, 1–21.Google Scholar
  21. 3.21
    Bhide, S.B. and M.P. Collins: Reinforced Concrete Elements in Shear and Tension, Publication 87–02, University of Toronto, Canada, 1987.Google Scholar
  22. 3.22
    Kollegger, J. and G. Mehlhorn: Experimentelle Untersuchungen zur Bestimmung der Druckfestigkeit des gerissenen Stahlbetons bei einer Querzugbeanspruchung, Heft 413, Deutscher Ausschuss für Stahlbeton, Germany, 1990.Google Scholar
  23. 3.23
    Maier, J. and B. Thürlimann: Bruchversuche an Stahlbetonscheiben, Report 8003–1, Eidgenössische Technische Hochschule Zürich, Switzerland, 1985.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • C. Meyer
    • 1
  • J. Blaauwendraad
    • 2
  • P. H. Feenstra
    • 2
  • R. de Borst
    • 2
  1. 1.Columbia UniversityNew YorkUSA
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations