Skip to main content

EHD Liquid-Liquid/Liquid-Solid Flow

  • Conference paper
Electrohydrodynamics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 380))

  • 666 Accesses

Abstract

The effects of electric fields upon fluid motion have found several applications in chemical engineering. The earliest and best-known is that upon the coalescence of particulates in the gas phase. Within the past 25 years, the effects of electric fields upon liquid-liquid systems have been increasingly the focus of research. Conventionally, efficient liquid-liquid mass transfer requires mechanical agitation in order to reduce droplet size and increase specific interfacial area. However, excessive agitation can produce drops so small that they form stable emulsions which are hard to coalesce; also, the mass transfer coefficients are usually very small for small drops because surface forces prevent circulation and they behave like rigid spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affen, P. and R. Moreau (1972), J. Mécanic, 11, 471–520.

    Google Scholar 

  • Baffles, P.J. (1981), Ind. Eng. Chem. Process Des. Dev., 20, 564–570.

    Google Scholar 

  • Baffles, P.J. and M. Kahlbasi (1981), J. Electrostatics, 10, 81–88.

    Article  Google Scholar 

  • Carleson, T.E. and J.C. Berg (1983), Chem. Eng. Sci., 38, 871–876.

    Google Scholar 

  • Chang, J.S., A.J. Kelly and J.M. Crowley (1995), “Handbook of Electrostatic Processes”, Marcel Dekker Inc., New York.

    Google Scholar 

  • Chang, J.S. (1984), “CANDU Thermalhydraulics”, Ch. 11, R. Bonalumi et al., Eds., MIES Press, Hamilton.

    Google Scholar 

  • Clift, R., J.R. Grace and M.E. Weber (1978), “Bubbles, Drops and Particles”, Academic Press, New York.

    Google Scholar 

  • Cloupeau, M. and B. Prunet-Foch (1990), J. Electrostatics, 25, 165.

    Article  Google Scholar 

  • Cross, J.A. (1987), “Electrostatics: principles, problems and applications”, Adam Hilger, Bristol.

    Google Scholar 

  • He, W., M.H.I. Baird and J.S. Chang (1991), Can. J. Chem. Eng., 69, 1174–1183.

    Google Scholar 

  • He, W., M.H.I. Baird and J.S. Chang (1996), IEEE Trans. Industry Applications, 32, 146–152.

    Article  Google Scholar 

  • Huebner, A.L. (1970), Science, 168, 118.

    Article  Google Scholar 

  • Kao, K.C. (1961), Brit. J. Appl. Phys., 12, 629–632.

    Google Scholar 

  • Kitahara, A. (1984), “Chapter 5: Nonaqueous systems”, in Electrical Phenomena at Interfaces, ( A. Kitahara and A. Watanabe eds.), Marcel Dekker, Inc,. New York.

    Google Scholar 

  • Landau, L.D. and E.M. Lifshitz (1960), “Electrohydrodynamics of Continuous Media”, Addison Wesley, Reading, MA.

    Google Scholar 

  • Masuda, S., M. Washizu and I. Kawabata (1986), Conf. Record of IEEE IAS 1986 meeting, pp. 1361–1365.

    Google Scholar 

  • Millar, M.K. and L.R. Weatherley (1989), Chem. Eng. Res. Dev., 67, 227–231.

    Google Scholar 

  • Morala, E.C., D. Cheong, P.T. Wan, G.A. Irons and J.S. Chang (1984), “Multi-phase Flow and Heat Transfer III., Part A: Fundamentals, Elsevier Science Publishing, Amsterdam, pp. 501–511.

    Google Scholar 

  • Ogata, S., Y. Hara and H. Shinohara (1978), Inter. Chem. Eng., 18, 482.

    Google Scholar 

  • Ogata, S., T. Kawashima, O. Nakaya and O. Shinohara (1976), J. Chem. Eng. Japan, 9, 440–444.

    Google Scholar 

  • Pohl, H.A. (1951), J. Appl. Phys. 22, 869–871.

    Google Scholar 

  • Pohl, H.A. (1978), Dielectrophoresis, Cambridge University Press, New York.

    Google Scholar 

  • Rayleigh, L. (1882), Phil. Mag., 14, 184.

    Article  Google Scholar 

  • Rayleigh, J.W.S. (1882), Phil. Mag. (Ser. 5 ), 14, 184–186.

    Article  Google Scholar 

  • Sato, M. (1984), J. Electrostatics, 15, 237.

    Article  Google Scholar 

  • Stewart, G. and J.D. Thornton (1967), Symp. Ser. No. 26, Inst. Chem. Engrs., 29, 29–42.

    Google Scholar 

  • Takamatsu, T., Y. Hashimoto, A. Yamaguchi and T. Katayama (1981), J. Chem. Eng. Japan, 14, 178–182.

    Google Scholar 

  • Vonnegut, B. and R.L. Neubauer (1952), J. Colloid Sci., 7, 616–622.

    Article  Google Scholar 

  • Vu, N. and T.E. Carlson (1986), AIChE J., 32, 1739–1742.

    Article  Google Scholar 

  • Vonnegut, B. and R. Neubauer (1952), J. Colloid Sci., 7, 616 ).

    Article  Google Scholar 

  • Wang, S.H., J.S. Chang and A.A. Berezin (1993), J. Electrostatics, 30, 235–246.

    Google Scholar 

  • Zeleny, J. (1920), Phys. Rev., 16, 102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Castellanos, A. (1998). EHD Liquid-Liquid/Liquid-Solid Flow. In: Castellanos, A. (eds) Electrohydrodynamics. International Centre for Mechanical Sciences, vol 380. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2522-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2522-9_22

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83137-3

  • Online ISBN: 978-3-7091-2522-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics