EHD Liquid-Liquid/Liquid-Solid Flow

  • Antonio Castellanos
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 380)


The effects of electric fields upon fluid motion have found several applications in chemical engineering. The earliest and best-known is that upon the coalescence of particulates in the gas phase. Within the past 25 years, the effects of electric fields upon liquid-liquid systems have been increasingly the focus of research. Conventionally, efficient liquid-liquid mass transfer requires mechanical agitation in order to reduce droplet size and increase specific interfacial area. However, excessive agitation can produce drops so small that they form stable emulsions which are hard to coalesce; also, the mass transfer coefficients are usually very small for small drops because surface forces prevent circulation and they behave like rigid spheres.


Applied Voltage Droplet Diameter Emission Mode Droplet Velocity Fine Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Affen, P. and R. Moreau (1972), J. Mécanic, 11, 471–520.Google Scholar
  2. Baffles, P.J. (1981), Ind. Eng. Chem. Process Des. Dev., 20, 564–570.Google Scholar
  3. Baffles, P.J. and M. Kahlbasi (1981), J. Electrostatics, 10, 81–88.CrossRefGoogle Scholar
  4. Carleson, T.E. and J.C. Berg (1983), Chem. Eng. Sci., 38, 871–876.Google Scholar
  5. Chang, J.S., A.J. Kelly and J.M. Crowley (1995), “Handbook of Electrostatic Processes”, Marcel Dekker Inc., New York.Google Scholar
  6. Chang, J.S. (1984), “CANDU Thermalhydraulics”, Ch. 11, R. Bonalumi et al., Eds., MIES Press, Hamilton.Google Scholar
  7. Clift, R., J.R. Grace and M.E. Weber (1978), “Bubbles, Drops and Particles”, Academic Press, New York.Google Scholar
  8. Cloupeau, M. and B. Prunet-Foch (1990), J. Electrostatics, 25, 165.CrossRefGoogle Scholar
  9. Cross, J.A. (1987), “Electrostatics: principles, problems and applications”, Adam Hilger, Bristol.Google Scholar
  10. He, W., M.H.I. Baird and J.S. Chang (1991), Can. J. Chem. Eng., 69, 1174–1183.Google Scholar
  11. He, W., M.H.I. Baird and J.S. Chang (1996), IEEE Trans. Industry Applications, 32, 146–152.CrossRefGoogle Scholar
  12. Huebner, A.L. (1970), Science, 168, 118.CrossRefGoogle Scholar
  13. Kao, K.C. (1961), Brit. J. Appl. Phys., 12, 629–632.Google Scholar
  14. Kitahara, A. (1984), “Chapter 5: Nonaqueous systems”, in Electrical Phenomena at Interfaces, ( A. Kitahara and A. Watanabe eds.), Marcel Dekker, Inc,. New York.Google Scholar
  15. Landau, L.D. and E.M. Lifshitz (1960), “Electrohydrodynamics of Continuous Media”, Addison Wesley, Reading, MA.Google Scholar
  16. Masuda, S., M. Washizu and I. Kawabata (1986), Conf. Record of IEEE IAS 1986 meeting, pp. 1361–1365.Google Scholar
  17. Millar, M.K. and L.R. Weatherley (1989), Chem. Eng. Res. Dev., 67, 227–231.Google Scholar
  18. Morala, E.C., D. Cheong, P.T. Wan, G.A. Irons and J.S. Chang (1984), “Multi-phase Flow and Heat Transfer III., Part A: Fundamentals, Elsevier Science Publishing, Amsterdam, pp. 501–511.Google Scholar
  19. Ogata, S., Y. Hara and H. Shinohara (1978), Inter. Chem. Eng., 18, 482.Google Scholar
  20. Ogata, S., T. Kawashima, O. Nakaya and O. Shinohara (1976), J. Chem. Eng. Japan, 9, 440–444.Google Scholar
  21. Pohl, H.A. (1951), J. Appl. Phys. 22, 869–871.Google Scholar
  22. Pohl, H.A. (1978), Dielectrophoresis, Cambridge University Press, New York.Google Scholar
  23. Rayleigh, L. (1882), Phil. Mag., 14, 184.CrossRefGoogle Scholar
  24. Rayleigh, J.W.S. (1882), Phil. Mag. (Ser. 5 ), 14, 184–186.CrossRefGoogle Scholar
  25. Sato, M. (1984), J. Electrostatics, 15, 237.CrossRefGoogle Scholar
  26. Stewart, G. and J.D. Thornton (1967), Symp. Ser. No. 26, Inst. Chem. Engrs., 29, 29–42.Google Scholar
  27. Takamatsu, T., Y. Hashimoto, A. Yamaguchi and T. Katayama (1981), J. Chem. Eng. Japan, 14, 178–182.Google Scholar
  28. Vonnegut, B. and R.L. Neubauer (1952), J. Colloid Sci., 7, 616–622.CrossRefGoogle Scholar
  29. Vu, N. and T.E. Carlson (1986), AIChE J., 32, 1739–1742.CrossRefGoogle Scholar
  30. Vonnegut, B. and R. Neubauer (1952), J. Colloid Sci., 7, 616 ).CrossRefGoogle Scholar
  31. Wang, S.H., J.S. Chang and A.A. Berezin (1993), J. Electrostatics, 30, 235–246.Google Scholar
  32. Zeleny, J. (1920), Phys. Rev., 16, 102.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Antonio Castellanos
    • 1
  1. 1.University of SevillaSpain

Personalised recommendations