Instability and Convection in Cylindrical Geometry

  • Antonio Castellanos
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 380)


In chapter 15 we mentioned that the instability problem arises in the three electrode geometries of high symmetry when the injection is homogeneous on the injector. Chapter 15 was devoted to instabilities in the case of plane parallel electrodes. In this section we consider the two other configurations of coaxial cylinders and of concentric spheres. Given a constant value q0 of the injected space charge at the injecting electrode, the motionless state is a solution and the instability problem is to determine under what conditions this solution destabilises. Qualitatively the instability mechanism is the same than in the case of plane parallel electrodes. Due to coulombic repulsion, the charge density decreases when going from injector to collector along a radial line and, therefore, there is a positive coupling between velocity disturbances and the subsequent charge density perturbations (the argument of §15–1 is of general nature and is not specific to the case of parallel electrodes). Again the instability parameter is the nondimensional number T and the criterion depends on the injection parameter C = q0d2/εV.


Convective Cell Outer Cylinder Coaxial Cylinder Forced Flow Convection Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Atten, J.C. Lacroix and R. Tobazeon: Proceed. 4th Intern. Conf. Cond. Breakdown in Dielectric Liquids (Ed. T. Gallagher), Dublin, 1972, 89–92.Google Scholar
  2. [2]
    A.T. Richardson: J. Mech. Appl. Math., 33 (1980), 277–285CrossRefzbMATHGoogle Scholar
  3. [3]
    N. Agräit and A. Castellanos: Phys. Fluids A, 2 (1990), 38–44.CrossRefGoogle Scholar
  4. [4]
    S. Oliveri and P. Atten: Phys. Fluids, 29 (1986), 1378–1385.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    J.C. Lacroix, P. Atten and E.J. Hopfinger: J. Fluid Mech., 69 (1975), 539–563.CrossRefzbMATHGoogle Scholar
  6. [6]
    P. Atten and J.C. Lacroix: J. Mécanique, 18 (1979), 469–510.zbMATHMathSciNetGoogle Scholar
  7. [7]
    N. Felici: Dir. Current, 2 (1972), 147–165.Google Scholar
  8. [8]
    N. Félici, J.P. Gosse and B. Gosse: Rev. Gén. Electr., 85 (1976), 861–874.Google Scholar
  9. [9]
    M.S. Apfel’baum: Magnitnaya Gidrodinamika, 3 (1978), 57.Google Scholar
  10. [10]
    Y.K. Stishkov and A.A. Ostapenko: Magnitnaya Gidrodinamika, 4 (1979), 46.Google Scholar
  11. [11]
    P. Atten and M. Haidara: IEEE Trans. Electr. Ins., EI-20 (1985), 187–198.Google Scholar
  12. [12]
    L. Elouadie: “Electroconvection et augmentation des échanges thermiques produites par une injection unipolaire en géométrie fil-cylindre co-axiaux”, Doctoral Thesis, Joseph Fourier University, Grenoble, 1991.Google Scholar
  13. [13]
    P. Atten and L: Elouadie: J. Electrostatics, 34 (1995), 279–297.CrossRefGoogle Scholar
  14. [14]
    R. Tobazéon: J. Electrostatics, 15 (1984), 359–384.CrossRefGoogle Scholar
  15. [15]
    A. Castellanos and N. Agräit: in Conference Record 10th ICDL (Eds. P. Atten and R.Tobazeon), IEEE Cat. No 90CH2812–6, 1990, 311–315.Google Scholar
  16. [16]
    A.T. Perez, P. Atten, B. Malraison, L. Elouadie and F.M.J. McCluskey: in Experimental heat transfer, fluid mechanics and thermodynamics (Eds. R.K. Shah, E.N. Ganic and K.T. Yang), Elsevier, 1988, 941–947.Google Scholar
  17. [17]
    R.C. Martinelli: Trans. ASME, 69 (1947), 947–959.Google Scholar
  18. [18]
    H. Schlichting: “Boundary layer theory”, McGraw-Hill, New-York, 1981.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Antonio Castellanos
    • 1
  1. 1.University of SevillaSpain

Personalised recommendations