Unipolar Injection Induced Electroconvection

  • Antonio Castellanos
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 380)


Up to now we considered the convection of rather limited amplitude and we implicitly assumed that the convective pattern is well defined so that we deal with nearly identical convective cells of long life time compared with the mean rotation time in a cell. The studies recalled in chapter 2 focused on the time dependent character of injection induced convection and the transition to chaotic behaviour for convection in one convective cell only. This picture no longer applies when the applied voltage is high enough: the pattern destabilises (“phase turbulence” [1,21) and the life time of convective cells becomes so short that they can no longer be considered as individual and well defined cells (see for instance the pattern in [3]). The time behaviour of the measured current then reflects the complex evolution of the spatial distribution of the velocity field as well as the vacillation of velocity amplitude in individual convective cells (the “phase turbulence” results in low and very low frequency noise in the power spectra as it appears in Fig. 16-4).


Nusselt Number Coulomb Force Forced Flow Typical Velocity Applied Voltage Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Atten, J.C. Lacroix and B. Malraison: Phys. Lett., 79A (1980), 255–258.CrossRefGoogle Scholar
  2. [2]
    B. Malraison and P. Atten: Phys. Rev. Lett., 49 (1982), 723–726.CrossRefGoogle Scholar
  3. [3]
    J.C. Lacroix, P. Atten and E.J. Hopfinger: J. Fluid Mech., 69 (1975), 539–563.CrossRefzbMATHGoogle Scholar
  4. [4]
    G.A. Ostroumov: Zh. Tekh. Fiz., 24 (1954), 1915–1919.Google Scholar
  5. [5]
    O.M. Stuetzer: Phys. Fluids, 5 (1962), 534–544.CrossRefzbMATHGoogle Scholar
  6. [6]
    N. Felici: Rev. Gén. Electr., 78 (1969), 717–734.Google Scholar
  7. [7]
    P. Atten, F.M.J. McCluskey and A.C. Lahjomri: IEEE Trans. Ind. Appl., IA23 (1987), 705–711.Google Scholar
  8. [8]
    J.C. Lacroix: “Instabilités hydrodynamiques et électroconvection lors d’injection d’ions dans les liquides isolants isotropes”, Doctoral Thesis, Grenoble University 1976.Google Scholar
  9. [9]
    A. Castellanos: IEEE Trans. Electr. Ins., IE26 (1991), 1201–1215.Google Scholar
  10. [10]
    P. Atten, F.M.J. McCluskey and A.T. Perez: IEEE Trans. Electr. Ins., EI23 (1988), 659–667.Google Scholar
  11. [11]
    E.J. Hopfinger and J.P. Gosse: Phys. Fluids, 14 (1971), 1671–1682.CrossRefGoogle Scholar
  12. [12]
    R.H. Kraichnan: Phys. Fluids, 5 (1962), 1374–1389.CrossRefGoogle Scholar
  13. [13]
    D.R. Moore and N.O. Weiss: J. Fluid Mech., 58 (1973), 289–312.CrossRefzbMATHGoogle Scholar
  14. [14]
    R. Tobazéon: J. Electrostatics, 15 (1984), 359–384.CrossRefGoogle Scholar
  15. [15]
    P. Atten and J.P. Gosse: J. Chem. Physics, 51 (1969), 2804–2811.CrossRefGoogle Scholar
  16. [16]
    J.C. Lacroix and R. Tobazeon: in Proceedings 4th Intern. Conf. Cond. Breakdown in Dielectric Liquids (Ed. T. Gallagher ), Dublin, 1972, 93–96.Google Scholar
  17. [17]
    N. Felici: Dir. Current, 2 (1972), 147–165.Google Scholar
  18. [18]
    J.C. Lacroix, P. Atten and E.J. Hopfinger: Internal Report, 1979.Google Scholar
  19. [19]
    P. Atten, B. Malraison and S. Alikani: J. Electrostatics, 12 (1982), 477–488.CrossRefGoogle Scholar
  20. [20]
    N. Felici and J.C. Lacroix: J. Electrostatics, 5 (1978), 135–144.CrossRefGoogle Scholar
  21. [21]
    A. Castellanos and N. Agräit: IEEE Trans. Ind. Appl., IA28 (1992), 513–519.Google Scholar
  22. [22]
    P. Atten, R. Baron and M. Goniche: J. Phys. Lettr., 41 (1980), L-1-L-4.Google Scholar
  23. [23]
    P. Atten and T. Honda: J. Electrostatics, 11 (1982), 225–245.CrossRefGoogle Scholar
  24. [24]
    L. Elouadie: “Electroconvection et augmentation des échanges thermiques produites par une injection unipolaire en géométrie fil-cylindre co-axiaux”, Ph. D. Thesis, Joseph Fourier University, Grenoble, 1991.Google Scholar
  25. [25]
    A. Denat, B. Gosse and J.P. Gosse: J. Electrostatics; 7 (1979), 205–225.CrossRefGoogle Scholar
  26. [26]
    A.T. Perez, P. Atten, B. Malraison, L. Elouadie and F.M.J. McCluskey: in “Experimental heat transfer, fluid mechanics and thermodynamics” (Eds. R.K. Shah, E.N. Ganic and K.T. Yang), Elsevier 1988, 941–947.Google Scholar
  27. [27]
    F.M.J. McCluskey, P. Atten and A.T. Perez: Int. J. Heat Mass Transfer, 34 (1991), 2237–2250.CrossRefGoogle Scholar
  28. [28]
    P. Atten and B. Malraison: in Conference Record 10th ICDL (Eds. P. Atten and R.Tobazeon), IEEE Cat. No 90CH2812–6, 1990, 323–327.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Antonio Castellanos
    • 1
  1. 1.University of SevillaSpain

Personalised recommendations