Skip to main content

Modern Analytical Methods Applied to Mechanical Engineering Systems

  • Conference paper
Modern Methods of Analytical Mechanics and their Applications

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 387))

  • 335 Accesses

Abstract

In the following lectures modern analytical methods are applied to several industrial systems. The first application is the use of singular perturbation analysis in the eigenvalue problem of a vibrating string with a small bending stiffness. This models the behavior of overhead transmission lines. A more complicated system is the eigenvalue problem of a cylinder vibrating in an cylindrical duct, which is filled with a viscous fluid.

The next lecture shows the use of analytical methods in the modelling of ultrasonic motors. Of special interest is the coupling between the electric and the mechanical field in the piezoelectric patches. Here Hamilton’s principle for electromechanical systems is of great importance. It allows to find approximate solutions fulfilling additional constraint equations.

In overhead transmission lines also wind excited vibrations are important as they may lead to fatigue. Models for the corresponding mechanism are given as well as the analysis of special vibration absorbers designed by modern methods of vibration theory.

The last lecture deals with three problems of nonholonomic systems and of stability and instability theorems. The first problem shows that the augmented Lagrangian is not stationary for nonholonomic systems. The second gives a simple exercise in Liapunov stability. The last deals with the Lagrange-Dirichlet theorem and its inverses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Anderson, K.; Hagedorn, P.: On the Energy Dissipation in Spacer Dampers in Bundled Conductors of Overhead Transmission Lines, Journal of Sound and Vibration (1995), 180 (4), 539–556.

    Article  Google Scholar 

  2. Chen, S.S.; Wambsganss, M.W.; Jendrzejczyk, J.A.: Added Mass and Damping of a Vibrating Rod in Confined Viscous Fluids, Journal of Applied Mechanics, Vol. 43, 1976, 325–329.

    Article  Google Scholar 

  3. Claren, R.; Diana, G.: Vibrazioni dei conduttori, L’Energia Elettrica, No. 10, 1966.

    Google Scholar 

  4. Cole, J.D.: Perturbation Methods in Applied Mathematics, Blaisdell Publ. Comp., 1968.

    MATH  Google Scholar 

  5. Cremer, L.; Heckl, M.: Structure-Borne Sound, Springer-Verlag, Berlin, Heidelberg, New York, London, 1988.

    Google Scholar 

  6. Cremer, L.: Vorlesungen ĂĽber Technische Akustik, Springer-Verlag, Berlin, Heidelberg, New York, 1971.

    Google Scholar 

  7. Diana, G.; Falco, M.: On the forces transmitted to a vibrating cylinder by a blowing fluid, Meccanica, Vol. 6, 1971, 9–22.

    Article  Google Scholar 

  8. Doocy, E.S.; Hard, A.R.; Rawlins, C.B.; Ikegami, R.: Transmission line reference book, Wind induced Conductor Motion, Electric Power Research Institute, Palo Alto, Cal. 1979.

    Google Scholar 

  9. Van Dyke, M.: Perturbation Methods in Fluid Mechanics, Parabolic Press, Palo Alto, California, 1975.

    Google Scholar 

  10. Eckhaus, W.: Asymptotic Analysis of Singular Perturbations, North-Holland, Amsterdam, 1979.

    MATH  Google Scholar 

  11. Eckhaus, W.: Matched Asymptotic Expansions and Singular Perturbations, North-Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  12. Farquharson, F.; Mehugh, R.E.: Wind tunnel investigation of conductor vibration with use of rigid models, Trans. AIEE, Vol. 75, 1956, Part III, 871–878.

    Google Scholar 

  13. Hagedorn, P.: Nonlinear Oscillations, Clarendon Press, Oxford, 1988.

    Google Scholar 

  14. Hagedorn, P.: Ein einfaches Rechenmodell zur Berechnung winderregter Schwingungen an Hochspannungsleitungen mit Dämpfern, Ing.-Arch., Vol. 49, 1980, 161–177.

    Article  MATH  Google Scholar 

  15. Hagedorn, P.: On the computation of damped wind-excited vibrations of overhead transmission lines, Journal of Sound and Vibration, Vol. 83, 1982, 253–271.

    MathSciNet  Google Scholar 

  16. Hagedorn, P.; Wallaschek, J.: Traveling Wave Ultrasonic Motors, Part I: Working Principle and Mathematical Modelling of the Stator, Journal of Sound and Vibration, Vol. 155 (1): 31–46, 1993.

    Google Scholar 

  17. Hagedorn, P.: Die Umkehrung der Stabilitätssätze von Lagrange-Dirichlet und Routh, Archive for Rational Mechanics and Analysis, Vol. 42, 1971, 4, 281–316.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hagedorn, P. and Mahwin, J.: A Simple Variational Approach to an Inversation of the Lagrange-Dirichlet Theorem, Archive for Rational Mechanics and Analysis, 120 (1992), 327–335.

    Article  MathSciNet  MATH  Google Scholar 

  19. Horacec, J.; Zolotarev, I.: Acoustic-Structural coupling of Vibrating Cylindrical Shells with Flowing Fluid, Journal of Fluids and Structures, Vol. 5, 1991, 487–501.

    Google Scholar 

  20. Johnson, K.L.: Contact Mechanics, Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  21. Kaplun, S.: Fluid Mechanics and Singular Perturbations, Ed. by Lagerstrom, P.A., Howard, L.N. and Liu, C.S., Academic Press, New York, 1967.

    Google Scholar 

  22. Kevorkian, J.; Cole, J.D.: Perturbation Methods in Applied Mechanics, Applied Mathematical Sciences, Vol. 34, Springer-Verlag, New York, 1980.

    Google Scholar 

  23. Nayfeh, A.; Mook, D.T.: Nonlinear Oscillations, John Wiley and Sons, New York, 1979.

    MATH  Google Scholar 

  24. Morse, P.M.; Ingard, K.U.: Theoretical Acoustics, 1968, New York: MCGraw-Hill.

    Google Scholar 

  25. Nascimento, N.; Hagedorn, P.: Stochastic field processes in the mathematical modelling of damped transmission line vibrations, Paper presented at the Fifth International Conference on Mathematical Modelling, Berkeley, 1985.

    Google Scholar 

  26. Nascimento, N.: Stochastische Schwingungen eindimensionaler, kontinuierlicher mechanischer Systeme, Doctoral Thesis, TH Darmstadt, 1984.

    Google Scholar 

  27. Nayfeh, A.H.: Perturbation Methods, John Wiley and Sons, New York, 1973.

    MATH  Google Scholar 

  28. Neimark, J.F. and Fufaev, N.A.: Dynamics of Nonholonomic Systems, American National Society, Rhodes Island, 1972.

    MATH  Google Scholar 

  29. O’Malley, R.E.: Introduction to Singular Perturbations, Academic Press, New York, 1974.

    MATH  Google Scholar 

  30. Palauiadov, V. P.: On stability of an Equlibrium in a Potential Field, Functional Analysis and its Application, Vol. 11 (1977), No. 4, 42–55 (in Russian).

    Google Scholar 

  31. Pars, B.A.: Analytical Dynamics, Heinemann, London, 1968.

    Google Scholar 

  32. Paîdoussis, M.P.; Nguyen, V.B.; Misra, A.K.: A Theoretical Study of the Stability of Cantilevered Coaxial Cylindrical Shells Conveying Fluid, Journal of Fluids and Structures, Vol. 5, 1991, 127–164.

    Google Scholar 

  33. Rawlins, C.B.: Power imparted by wind to a model of a vibrating conductor, Electrical Products Division, ALCOA Labs., Massena, NY, 1982.

    Google Scholar 

  34. Schäfer, B.: Dynamical modelling of wind-induced vibrations of overhead lines, International Journal of Non-Linear Mechanics, Vol. 19, 1984, 455–467.

    Article  MATH  Google Scholar 

  35. Seemann, W.: Stresses in a Thin Piezoelectric Element Bonded to a Half-space, Applied Mechanics Reviews, to appear November 1997.

    Google Scholar 

  36. Seemann, W.; Hagedorn, P.: On the Realizability of a Traveling Wave Linear Motor, 13th International Modal Analysis Conference,Conference Proceedings, Nashville 1995, USA, pp. 1778–1784.

    Google Scholar 

  37. Seemann, W.; Wolf, K.; Straub, A.; Hagedorn, P.; Chang, F.-K.: Bonding Stresses between Piezoelectric Actuators and elastic Beams, Proceedings of the SPIE Conference on Smart Materials and Structures, San Diego, 1997.

    Google Scholar 

  38. Seemann, W.; Wauer, J.: Vibrating Cylinder in a Cylindrical Duct Filled with an Incompressible Fluid of Low Viscosity, Acta Mechanica, Vol. 113, pp. 93–107, 1995.

    Article  MATH  Google Scholar 

  39. Seemann, W.; Wolf, K.; Hagedorn, P.: Comparison of Refined Beam Theory and FEM for Piezo-Actuated Structures, ASME Design Engineering Technical Conferences, Paper-No. VIB-3838, Sacramento, 1997.

    Google Scholar 

  40. Straubli, T.: Untersuchung der oszillierenden Kräfte am querangeströmten, schwingenden Kreiszylinder, Doctoral Thesis, ETH Zürich, 1983.

    Google Scholar 

  41. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations, Plenum Press, New York, 1969.

    Book  Google Scholar 

  42. Wallaschek, J.: Piezoelectric Ultrasonic Motors, Journal of Intelligent Material Systems and Structures, Vol. 6: 71–83, 1995.

    Article  Google Scholar 

  43. Weidenhammer, F.: Eigenfrequenzen eines Stabes im zylindrischen Luftraum, Zeitschrift fĂĽr Angewandte Mathematik und Mechanik, Vol. 55, 1975, T187 - T190.

    Article  MATH  Google Scholar 

  44. Whittaker, E.T.: A treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge University Press, London, 1937

    MATH  Google Scholar 

  45. Yang, C.-I.; Moran, T. J.: Finite Element Solution of Added Mass and Damping of Oscillation Rods in Viscous Fluids, Journal of Applied Mechanics,Vol 46, 1979, 519523.

    Google Scholar 

  46. Zampieri, G. and Neto, A. Barone: Attractive Central Forces may yield Liapunov Instability. RelatĂłrio TĂ©cnico, Dep. Mat. Apl. USP, Dec. 1984.

    Google Scholar 

  47. Zharii, O: Thin Piezoelectric Element on an Elastic Half-Space, Private Communication, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Hagedorn, P., Seemann, W. (1998). Modern Analytical Methods Applied to Mechanical Engineering Systems. In: Rumyantsev, V.V., Karapetyan, A.V. (eds) Modern Methods of Analytical Mechanics and their Applications. International Centre for Mechanical Sciences, vol 387. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2520-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2520-5_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83138-0

  • Online ISBN: 978-3-7091-2520-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics