Analytical Methods in Dynamical Simulation of Flexible Multibody Systems

  • M. Pascal
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 387)


This part is devoted to the motion of hinged connected flexible bodies with special applications to satellites and robots. Some open problems arising in the dynamical formulation of these systems are discussed. Then the use of analytical methods for the vibrations analysis of flexible multibody systems is presented. Two special applications of this method in the field of astronautic are done. At last, the problem of control of flexible robots is investigated.


Multibody System Reference Configuration Column Matrix Flexible Body Inertial Reference Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Veubeke, B.F.: The Dynamics of Flexible Bodies, J. of Eng. Sci, 1976, Vol. 14, pp. 895–913.CrossRefMATHGoogle Scholar
  2. 2.
    Wallrapp, O. and Schertassek, R.: Representation of Geometric Stiffening in Multibody System Simulation, Int. J. for Numerical Methods in Engineering, 1991, Vol. 32, pp. 1833–1850.CrossRefMATHGoogle Scholar
  3. 3.
    Wittenburg, J.: Dynamics of Systems of Rigid Bodies, B.G. Teubner, Stuttgart 1977.CrossRefGoogle Scholar
  4. 4.
    Pascal, M.: Non Linear Effects in Transient Dynamic Analysis of Flexible Multibody Systems. Proceed. of the 15th ASME Conf. on Mech. Vib. and Noise (1995), Boston (USA).Google Scholar
  5. 5.
    Wielanga, T.J.: Simplifications in the Simulation of Mechanisms Containing Flexible Members, 1984, P.H.D. Thesis, College of Engineering, The University of Michigan, Ann Arbor (USA).Google Scholar
  6. 6.
    Padilla, C.E., and Von Flotow, A.H.: Non linear Strain–Displacement Relations and Flexible Multibody Dynamics, J. Guidance, Control and Dynamics, 1992, Vol. 15, N° 1, pp. 128–136.Google Scholar
  7. 7.
    Banerjee, A.K. and Lemak, J.M.: Multi-Flexible Body Dynamics Capturing Motion-Induced Stiffness, ASME J. Applied Mechanics, 1991, Vol. 58, pp. 766–775.CrossRefGoogle Scholar
  8. 8.
    Pascal, M.: Dynamics Analysis of a system of Hinge-connected Flexible Bodies, Celestial Mechanics, 41, (1988), 253–274.CrossRefGoogle Scholar
  9. 9.
    Hughes, P.C.: Dynamics of Flexible Space Vehicles with Active Attitude Control, Celestial Mechanics, 9 (1974), 21–39.CrossRefMATHGoogle Scholar
  10. 10.
    Kolousek, V.: Dynamics in engineering structures. London, Butterworths, 197 3.Google Scholar
  11. 11.
    Poelaert, D.: Dynamics and Control of large flexible spacecraft, Proc. 4th Symposium, Blacksburg, Va (1983).Google Scholar
  12. 12.
    Pascal, M.: Dynamical Analysis of a Flexible Manipulator Arm, Acta Astr., 21, 3, (1990), 161–169.CrossRefMATHGoogle Scholar
  13. 13.
    Pascal, M.: Modal Analysis of a Rotating Flexible Space Station by a Continuous Approach, Z. Flugwiss. Welraumforsch 18 (1994), 1–6.Google Scholar
  14. 14.
    Pascal, M., Sylla, M.: Modèle dynamique par approche continue d’une grande structure spatiale, La Recherche Aérospatiale, 2, (1993), 67–77.Google Scholar
  15. 15.
    Bayo, E., Papadopoulos, P., Stubbe, J. and Serna, M. A.: Inverse Dynamics and Kinematics of Multilink Elastic Elastic Robots: An Iterative Frequency Domain Approach, Int. J. of Robotics Research, Vol. 8, No. 6, 1989, pp. 49–62.CrossRefGoogle Scholar
  16. 16.
    Chaloub, N. G. and Ulsoy, A. G.: Control of a Flexible Arm: Experimental and Theoretical Results, J. Dyn. Syst. Meas. Control ASME, Vol. 109, 1987, pp. 299310.Google Scholar
  17. 17.
    Siciliano, B. and Book, W. J.: A Singular Perturbation Approach to Control of Lightweight Flexible Manipulators, Int. J. of Robotics Research, Vol. 7, No. 4, 1988, pp. 79–90.CrossRefGoogle Scholar
  18. 18.
    Chedmail, P., Aoustin, Y. and Chevallereau, C.: Modelling and Control of Flexible Robots, Int. J. For Num. Meth. in Eng., Vol. 32, 1991, pp. 1595–1619.CrossRefMATHGoogle Scholar
  19. 19.
    Modi, V. J., Karray, F. and Chan, J. K.: On the Control of a Class of Flexible Manipulators Using Feed back Linearization Approach, 42nd Congress of the Int. Astr. Fed., October 5–11, 1991, Montreal, Canada.Google Scholar
  20. 20.
    Azouz, N.: Modélisation des structures souples polyarticulées. Application à la simulation des robots, Thèse de l’Université Pierre et Marie Curie (1994).Google Scholar
  21. 21.
    Barraco, A., Cuny, B., Hoffmann, A., Jamet, P., Combescure, A., Lepareux, M. and Bung, H.: Plexus-Software for the Numerical Analysis of the Dynamical Behavior of Rigid and Flexible Mechanisms in Multibody Systems Handbook, Berlin - Springer - Verlag, 1990.Google Scholar
  22. 22.
    Yachou, B.: Contrôle dynamique des structures polyarticulées déformables, Thèse de l’Université Pierre et Marie Curie (1995).Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • M. Pascal
    • 1
  1. 1.Pierre et Marie Curie UniversityParisFrance

Personalised recommendations