Advertisement

Effective Computations in Celestial Mechanics and Astrodynamics

  • C. Simó
Part of the International Centre for Mechanical Sciences book series (CISM, volume 387)

Abstract

Problems in Celestial Mechanics and Astrodynamics are considered under the point of view of Hamiltonian Dynamical Systems. A main tool to analyze the dynamics consists in studying the skeleton of the system, that is, the invariant objects (fixed points, periodic orbits and invariant tori) as well as their related stable, unstable and centre manifolds. Methods to compute these objects are presented. They are analytical, with the symbolic implementacion, purely numerical or a combination of both. Several examples are presented.

Keywords

Periodic Orbit Unstable Manifold Rotation Number Libration Point Invariant Torus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abraham, R., Marsden, J.: Foundations of Mechanics. Addison-Wesley, 1978.Google Scholar
  2. [2]
    Arnol’d, V. I.: Proof of a Theorem of A. N. Kolmogorov on the Persistence of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian. Russ. Math. Surveys, 18 (1963), 9–36.MATHGoogle Scholar
  3. [3]
    Arnol’d, V. I.: Small divisor problems in classical and celestial mechanics. Russ. Math. Surveys, 18 (1963), 85–192.CrossRefMATHGoogle Scholar
  4. [4]
    Arnol’d, V. I.: Instability of Dynamical Systems with Several Degrees of Freedom. Soy. Math. Dokl., 5 (1964), 581–585.MATHGoogle Scholar
  5. [5]
    Arnold, V.I., Avez, A.: Ergodic Properties of Classical Mechanics. Benjamin, N. Y., 1968.Google Scholar
  6. [6]
    Arnol’d, V. I., Kozlov, V. V., Neishtadt, A. I.: Dynamical Systems III. Springer-Verlag, 1988.Google Scholar
  7. [7]
    Benest, D., Froeschlé, C. (editors): Modern methods in celestial mechanics, Editions Frontières, 1990.Google Scholar
  8. [8]
    Broer H. W., Huitema G. B., Sevryuk M. B.: Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos, Lecture Notes in Math., Vol. 1645, Springer, 1996.Google Scholar
  9. [9]
    Bruno A.: Local Methods in Nonlinear Differential Equations. Springer-Verlag, 1989.Google Scholar
  10. [10]
    Celletti A., Chierchia L.: Construction of Analytic KAM Surfaces and Effective Stability Bounds. Commun. Math. Phys. 118 (1988), 119–161.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Celletti A., Giorgilli A.: On the Stability of the Lagrangian Points in the Spatial Restricted Three Body Problem. Celestial Mechanics 50 (1991), 31–58.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Companys, V., Gómez, G., Jorba, À., Masdemont, J., Rodriguez, J., Sim’o, C.: Orbits Near the triangular Libration Points in the Earth-Moon System. Proceedings of the 4th Congress of the International Astronautical Federation, 1993, Graz, Austria, IAF 1993, Paris.Google Scholar
  13. [13]
    Companys, V., Gómez, G., Jorba, A., Masdemont, J., Rodriguez, J., Sim’o, C.: Use of the Earth-Moon Libration Points for Future Missions. AAS 95-404, (1966) 1655–1666.Google Scholar
  14. [14]
    Delshams, A., Gelfreich, V., Jorba, À., Seara, T., M.: Exponentially Small Splitting of Separatrices under Fast Quasiperiodic Forcing. To appear in Comm. Math. Phys. Google Scholar
  15. [15]
    Delshams, A., Gelfreich, V., Jorba, À., Seara, T., M.: Lower and Upper Bounds for the Splitting of Separatrices for the Pendulum under a Fast Quasiperiodic Forcing. Electronic Research Anouncements of the AMS, 3 (1997), 1–10.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Delshams, A., Gutiérrez, P.: Effective Stability and KAM Theory. J. Diff. Eq., 128, (1996), 415–490.CrossRefMATHGoogle Scholar
  17. [17]
    Delshams, A., Gutiérrez, P.: Estimates on Invariant Tori Near an Elliptic Equilibrium Point of a Hamiltonian System. J. Diff. Eq., 131 (1996), 277–303.CrossRefMATHGoogle Scholar
  18. [18]
    Delshams, A., Seara, T., M.: An Asymptotic Expression for the Splitting of Separatrices of the Rapidly Forced Pendulum. Commun. Math. Phys., 150 (1992), 433–463.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Díez, C., Jorba, À., Simó, C.: A Dynamical Equivalent to the Equilateral Libration Points of the Earth-Moon System. Cel. Mech., 50 (1991), 13–29.CrossRefMATHGoogle Scholar
  20. [20]
    Dvorak, R., Lohinger, E.: Stability zones around the triangular Lagrangian points. In Predictability, stability and chaos in N-body dynamical systems, Ed. by A. E. Roy, Plenum Press, 439–446, 1991.Google Scholar
  21. [21]
    Eliasson, L., H.: Perturbations of Stable Invariant Tori for Hamiltonian Systems. Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. IV, 15: 1 (1988), 115–147.MathSciNetMATHGoogle Scholar
  22. [22]
    Flury, W., Gómez, G., Llibre, J., Martínez, R., Rodriguez, J., Simó, C.: Relative motion near the triangular libration points in the earth-moon system. In Proceed. of the Optical Interferometry Workshop,Granada 1987, ESA-SP 273.Google Scholar
  23. [23]
    Font, J.: Variedades invariantes y orbitas homoclinicas de L3 en el Problema Restringido de Tres Cuerpos. Master Thesis, Univ. Barcelona, 1984.Google Scholar
  24. [24]
    Fontich, E., Simó, C.: Invariant Manifolds for Near Identity Differentiable Maps and Splitting of Separatrices. Erg. Th. éJ Dyn. Systems, 10 (1990), 319–346.MATHGoogle Scholar
  25. [25]
    Fontich, E., Simó, C.: The Splitting of Separatrices for Analytic Diffeomorphisms. Erg. Th. 6 Dyn. Systems, 10 (1990), 295–318.MATHGoogle Scholar
  26. [26]
    Giorgilli, A., Galgani, L.: Formal integrals for an autonomous Hamiltonian system near an equilibrium point. Celest. Mech. 17 (1978), 267–280.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    Giorgilli, A., Delshams, A., Fontich, E., Galgani, L., Simó, C.: Effective Stability for a Hamiltonian System near an Elliptic Equilibrium Point, with an Application to the Restricted Three Body Problem. J. Diff. Eq., 77 (1989), 167–198.CrossRefMATHGoogle Scholar
  28. [28]
    Gómez, G., Llibre, J., Martínez, R., Simó, C.: Station Keeping of Libration Point Orbits. ESOC Contract 5648/83/D/JS(SC), Final Report, xii+689 p., 1985.Google Scholar
  29. [29]
    Gómez, G., Llibre, J., Martínez, R., Simó, C.: Station Keeping of a quasiperiodic halo orbit using invariant manifolds. In Proceed. 2nd Internat. Symp. on spacecraft flight dynamics, Darmstadt, october 86, ESA SP 225, 65–70, 1986.Google Scholar
  30. [30]
    Gómez, G., Llibre, J., Martinez, R., Rodriguez, J., Simó, C.: On the optimal station keeping control of halo orbits. Acta Astronautica, 15 (1987), 391–397.CrossRefGoogle Scholar
  31. [31]
    Gómez, G., Llibre, J., Martínez, R., Simó, C.: Study on Orbits near the Triangular Libration Points in the perturbed Restricted Three-Body Problem. ESOC Contract 6139/84/D/JS(SC), Final Report, iv+238 p., 1987.Google Scholar
  32. [32]
    Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Moon’s Influence on the Transfer from the Earth to a Halo Orbit around L1. In A.E. Roy, editor, Predictability, Stability and Chaos in the N-Body Dynamical Systems, 283–290, Plenum Press, 1991.Google Scholar
  33. [33]
    Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Quasiperiodic Orbits as a Substitute of Libration Points in the Solar System. In A.E. Roy, editor, Predictability, Stability and Chaos in the N-Body Dynamical Systems, 433–438, Plenum Press, 1991.Google Scholar
  34. [34]
    Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Study Refinement of Semi-Analytical Halo Orbit Theory. ESOC Contract 8625/89/D/MD(SC), Final Report, 213 p., 1991.Google Scholar
  35. [35]
    Gómez, G., Jorba, À., Masdemont, J., Simó, C.: A Dynamical Systems Approach for the Analysis of the SOHO Mission. In Proceedings of the Third International Symposium on Spacecraft Flight Dynamics, 449–456, ESA SP 326, Darmstadt, 1992.Google Scholar
  36. [36]
    Gómez, G., Jorba, À., Masdemont, J., Simó, C.: A Quasiperiodic Solution as a Substitute of L4 in the Earth-Moon System. In Proceedings of the Third International Symposium on Spacecraft Flight Dynamics, 35–42, ESA SP 326, Darmstadt, 1992.Google Scholar
  37. [37]
    Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Study of the transfer from the Earth to a Halo orbit around the equilibrium point L1. Cel. Mechanics, 55 (1993), 1–22.CrossRefGoogle Scholar
  38. [38]
    Gómez, G., Jorba, A., Masdemont, J., Simó, C.: Study of Poincaré Maps for Orbits Near Lagrangian Points. ESOC Contract 9711/91/D/ID(SC), Final Report, 276 p., 1993.Google Scholar
  39. [39]
    Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Study of the transfer between halo orbits in the solar system, Advances in the Astronautical Sciences, 84 (1994), 623–638.Google Scholar
  40. [40]
    Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Practical stability regions related to the Earth-Moon triangular libration points. Space Flight Dynamics (1994), 11–17.Google Scholar
  41. [41]
    Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Mission analysis for orbits in a vicinity of the Earth-Moon triangular libration points. Space Flight Dynamics (1994), 18–23.Google Scholar
  42. [42]
    Gómez, G., Jorba, A., Masdemont, J., Simó, C.: Study of the transfer between halo orbits. Preprint, 1997.Google Scholar
  43. [43]
    Gómez, G., Masdemont, J., Simó, C.: Lissajous orbits around halo orbits. Preprint, 1997Google Scholar
  44. [44]
    Henrard, J.: On Brown’s Conjecture. Celest. Mechanics, 31 (1983), 115–122.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Basel, 1994.CrossRefMATHGoogle Scholar
  46. [46]
    Holmes, P., Marsden, J.: Melnikov’s method and Arnol’d diffusion for perturbations of integrable Hamiltonian systems, J. Math. Phys. 23 (1982), 669–675.MathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    Irigoyen, M., Simó, C.: Non-integrability of the J2 problem. Celestial Mechanics, 55 (1993), 281–287.CrossRefMATHGoogle Scholar
  48. [48]
    Jorba, À., Ramirez—Ros, R., Villanueva, J.: Effective Reducibility of Quasiperiodic Linear Equations close to Constant Coefficients. SIAM Journal on Mathematical Analysis 28 (1997), 178–188.MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    Jorba, À., Simó, C.: On the reducibility of linear differential equations with quasiperiodic coefficients. J. Diff. Eq., 98, (1992), 111–124.CrossRefMATHGoogle Scholar
  50. [50]
    Jorba, À., Simó, C.: Effective stability for periodically perturbed Hamiltonian systems. In Hamiltonian Mechanics: Integrability and Chaotic Behavior, Editor J. Seimenis, Plenum Press, 245–252, 1994.CrossRefGoogle Scholar
  51. [51]
    Jorba, À., Simó, C.: On Quasi-Periodic Perturbations of Elliptic Equilibrium Points. SIAM Journal on Mathematical Analysis, 27 (1996), 1704–1737.MathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    Jorba, À., Villanueva, J.: On the Persistence of Lower Dimensional Invariant Tori under Quasiperiodic Perturbations. Journal of Nonlinear Science (to appear).Google Scholar
  53. [53]
    Jorba, À., Villanueva, J.: On the Normal Behaviour of Partially Elliptic Lower Dimensional Tori of Hamiltonian Systems, Nonlinearity (to appear).Google Scholar
  54. [54]
    Jorba, À., Villanueva, J.: Numerical Computation of Normal Forms around some Periodic Orbits of the Restricted Three Body Problem. Preprint (1997).Google Scholar
  55. [55]
    Kolmogorov, A., N.: The General Theory of Dynamical Systems and Classical Mechanics. Proc. of the 1954 Intern. Congress Math., (1957), 315–333.Google Scholar
  56. [56]
    Lazutkin, V. F., Simó, C.: Homoclinic orbits in the complex domain. Intern. Journal on Bifurcation and Chaos (to appear). (UB preprint No. 203 (1996)).Google Scholar
  57. [57]
    Llave, R., Rana, D.: Accurate Strategies for Small Denominator problems, Bull. Amer. Math. Soc., 22 (1990), 85–90.MathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    Llave, R., Rana, D.: Accurate Strategies in KAM Problems and their Implementation. In Computer Aided Proofs in Analysis,K. Meyer and D. Schmidt (Ed.), The IMA Volumes in Mathematics 28 (1991), 127–146.Google Scholar
  59. [59]
    Llibre, J., Simó, C.: Homoclinic phenomena in the three body problem. J. Diff. Eq., 37 (1980), 444–465.CrossRefMATHGoogle Scholar
  60. [60]
    Llibre, J., Simó, C.: Oscillatory solutions in the planar restricted three-body problem. Math. Ann., 248 (1980), 153–184.MathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    Llibre, J., Martinez, R., Simó, C.: Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L2 in the Restricted Three Body Problem. J. Diff. Eq., 58 (1985), 104–156.CrossRefMATHGoogle Scholar
  62. [62]
    Lochak, P., Meunier, C.: Multiphase Averaging for Classical Systems. Springer-Verlag, 1988.Google Scholar
  63. [63]
    MacKay, R. S., Meiss, J. D.: Hamiltonian Dynamical Systems. Adam Hilger, 1987.Google Scholar
  64. [64]
    Mckenzie, R., Szebehely, V.: Non-linear stability motion around the triangular libration points, Celestial Mechanics 23, (1981), 223–229.MathSciNetCrossRefGoogle Scholar
  65. [65]
    Markeev, A. P.: Stability of the triangular Lagrangian solutions of the restricted three body problem in the three dimensional circular case, Soviet Astronomy 15, (1972), 682686.Google Scholar
  66. [66]
    Martínez, R., Simó, C.: Blow up of collapsing binaries in the planar three body problem. In C. Albert, editor, Géométrie sympl. et mécanique, Lect. Notes in Math. 1416, 255267, Springer, 1990.Google Scholar
  67. [67]
    Martinez, R., Simó, C.: A note on the existence of heteroclinic orbits in the planar three body problem. In Seminar on Dynamical Systems, Euler International Mathematical Institute, St. Petersburg, 1991, S. Kuksin, V. Lazutkin and J. Pöschel, editors, 129–139, Birkhäuser, 1993.Google Scholar
  68. [68]
    Meyer, K. R., Hall, G. R.: Introduction to Hamiltonian Dynamical Systems and the N—Body Problem. Springer—Verlag, 1992.Google Scholar
  69. [69]
    Morales, J. J., Simó, C.: Picard-Vessiot theory and Ziglin’s theorem. J. Diff. Eq., 107 (1994), 140–162.CrossRefMATHGoogle Scholar
  70. [70]
    Morales, J. J., Simó, C.: Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations. J. Duff. Eq. 129 (1996), 111–135.CrossRefMATHGoogle Scholar
  71. [71]
    Morbidelli, A., Giorgilli, A.: Superexponential Stability of KAM Tori, J. Statist. Phys. 78 (1995), 1607–1617.MathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    Moser, J.: On Invariant Curves of Area—Preserving Mappings of an Annulus. Nachr. Akad. Wiss. Göttingen: Math. Phys. Kl. II, (1962), 1–20.Google Scholar
  73. [73]
    Moser, J.: Convergent Series Expansions for Quasi-Periodic Motions, Math. Annalen 169 (1967), 136–176.CrossRefMATHGoogle Scholar
  74. [74]
    Moser J.: Lectures on Hamiltonian Systems. Mem. Am. Math. Soc. 81, 1–60 (1968). Contained in [63].Google Scholar
  75. [75]
    Moser, J.: Regularization of Kepler’s problem and the averaging method on a manifold. Comm. Pure and Applied Math. 23 (1970).Google Scholar
  76. [76]
    Moser, J.: Stable and Random Motions in Dynamical Systems. Annals of Mathematics Studies, Princeton Univ. Press, 1973.MATHGoogle Scholar
  77. [77]
    Moser, J.: Is the Solar System Stable? Math. Intelligencer 1 (1978), 65–71. Contained in [63].Google Scholar
  78. [78]
    Nekhoroshev, N. N.: An Exponential Estimate of the Time of Stability of Nearly-Integrable Hamiltonian Systems. Russ. Math. Surveys, 32 (1977), 1–65.CrossRefMATHGoogle Scholar
  79. [79]
    Perry, A. D., Wiggins, S.: KAM Tori are Very Sticky: Rigorous Lower Bounds on the Time to Move Away from an Invariant Lagrangian Torus with Linear Flow. Physica 71 D (1994), 102–121.Google Scholar
  80. [80]
    Pöschel, J.: Integrability of Hamiltonian Systems on Cantor Sets, Comm. Pure Appl. Math., 35 (1982), 653–695.MathSciNetCrossRefMATHGoogle Scholar
  81. [81]
    Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste III. Gauthier—Villars, 1899.Google Scholar
  82. [82]
    Rudnev, M., Wiggins, S.: KAM Theory Near Multiplicity one Resonant Surfaces in Perturbations of a-Priori Stable Hamiltonian Systems. Preprint (1996).Google Scholar
  83. [83]
    Rudnev, M., Wiggins, S.: Existence of Exponentially Small Separatrix Splittings and Homoclinic Connections Between Whiskered Tori in Weakly Hyperbolic Near-Integrable Hamiltonian Systems. Preprint (1997).Google Scholar
  84. [84]
    Siegel, C. L., Moser, J. K.: Lectures on Celestial Mechanics. Springer—Verlag, 1971.Google Scholar
  85. [85]
    Simó, C.: Homoclinic phenomena and quasi-integrability. In V. Szebehely, editor, Stability of the Solar System and Its Minor Natural and Artificial Bodies, 305–316, D. Reidel Pub. Co., Holland, 1985.CrossRefGoogle Scholar
  86. [86]
    Simó, C.: Homoclinic and heteroclinic phenomena in some hamiltonian systems. In K. Meyer and D. Saari, editors, Hamiltonian Dynamical Systems, Contemporary Math. AMS, 81 (1988), 193–212.CrossRefGoogle Scholar
  87. [87]
    Simó, C.: Estimates of the error in normal forms of hamiltonian systems. Applications to effective stability. Examples. In A.E. Roy, editor, Long-term dynamical behaviour of natural and artificial N-body systems, 481–503, Kluwer, Dordrecht, Holland, 1988.CrossRefGoogle Scholar
  88. [88]
    Simó, C.: Estabilitat de Sistemes Hamiltonians. Memòries de la Reial Acadèmia de Ciències i Arts de Barcelona, 48 (1989), 303–348.Google Scholar
  89. [89]
    Simó, C.: Analytical and numerical computation of invariant manifolds. In [7], 285–330.Google Scholar
  90. [90]
    Simó, C.: Measuring the lack of integrability in the J2 problem. In A.E. Roy, editor, Predictability, Stability and Chaos in the N-Body Dynamical Systems, 305–309, Plenum Press, 1991.Google Scholar
  91. [91]
    Simó, C.: Averaging under Fast Quasiperiodic Forcing. In J. Seimenis (Ed.), Hamiltonian Mechanics: Integrability and Chaotic Behaviour, Vol 331 of NATO ‘Adv. Sci. Inst. Ser. B Phys., Plenum, New York (1994), 13–34.Google Scholar
  92. [92]
    Simó, C.: Com entendre el comportament no predictible dels sistemes deterministes. In Ordre i caos en ecologia, Publicacions Universitat de Barcelona (1995), 19–54.Google Scholar
  93. [93]
    Simó, C.: The use of time as a complex variable. Memòries de la Reial Acadèmia de Ciències i Arts de Barcelona, 55 (1996), 276–290.Google Scholar
  94. [94]
    Simó, C.: Effective computations in Hamiltonian Dynamics. In Mécanique Céleste, Journée Annuelle de la Société Mathématique de France (1996).Google Scholar
  95. [95]
    Simó, C.: An overview on some problems in Celestial Mechanics. In Summer Course on Iniciación a los sistemas dindmicos, organized by the Universidad Complutense de Madrid at El Escorial, July, 1997. Available at http://www-mal.upc.es/escorial.Google Scholar
  96. [96]
    Simó, C., Gómez, G., Jorba, À., Masdemont, J.: The Bicircular Model near the Triangular Libration Points if the RTBP. In From Newton to Chaos: Modern techniques for Understanding and Coping with Chaos in N-Body Dynamical Systems, Ed. A. E. Roy, Plenum Press, 343–370, 1995.Google Scholar
  97. [97]
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer-Verlag, 1983 (second printing).Google Scholar
  98. [98]
    Szebehely, V.: Theory of orbits. Academic Press, 1967.Google Scholar
  99. [99]
    Whittaker, E. T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge Univ. Press, 1927.Google Scholar
  100. [100]
    Wintner, A.: The analytical foundations of celestial mechanics. Princeton, 1947.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • C. Simó
    • 1
  1. 1.University of BarcelonaBarcelonaSpain

Personalised recommendations