Interacting Laminar and Turbulent Boundary Layers

  • A. Kluwick
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 390)


This chapter deals with the properties of viscous wall layers in the high Reynolds number limit which are subjected to rapid changes of the boundary conditions. Classical, e.g. hierarchical boundary layer theory in which the driving pressure is imposed by the external inviscid flow then typically leads to difficulties which often can be overcome by an interaction strategy. Examples include flows past bodies of finite length and shock boundary layer interactions. The interaction concept is formulated first for laminar flows but extended later also to the case of turbulent boundary layers.


Boundary Layer Wall Shear Stress Turbulent Boundary Layer Boundary Layer Equation Pressure Disturbance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackeret, J., Feldmann, F. and Rott, N. (1946) Untersuchung an Verdichtungsstößen in schnell bewegten Gasen. Mitteilungen aus dem Institut für Aerodynamik der ETH Zürich, Nr. 10.Google Scholar
  2. Adamson, T.C.Jr. and Feo, A. (1975) Interaction between a shock wave and a turbulent boundary layer in transonic flow. SIAM J. Appl. Math. 29, 121–145.ADSMATHGoogle Scholar
  3. Adamson, T.C.Jr. and Messiter, A.F. (1977) Normal Shock Wave-Turbulent Boundary Layer Interactions in Transonic Flow near Separation. in: Transonic Flow Problems in Turbomachinery, (eds.: T.C. Adamson, Jr. and M.F. Platzer), Hemisphere Publ. Co., 392–414.Google Scholar
  4. Adamson, T.C.Jr. and Messiter, A.F. (1980) Analysis of two-dimensional interactions between shock waves and boundary layers. Ann. Rev. Fluid Mech. 12, pp. 103–138.ADSMathSciNetGoogle Scholar
  5. Agrawal, S. and Messiter, A.F. (1984) Turbulent boundary layer interaction with a shock wave at a compression corner. J. Fluid Mech. 143, 23–46.ADSMATHGoogle Scholar
  6. Alber, I.E. (1980) Turbulent Wake of a Thin, Flat Plate. AIAA J. 18, 1044–1051.ADSMATHMathSciNetGoogle Scholar
  7. Andreopoulos, J. and Bradshaw, P. (1980) Measurements of interacting turbulent shear layers in the near wake of a flat plate. J. Fluid Mech. 100, 639–668.ADSGoogle Scholar
  8. Bippes, H. and Turek, M. (1984) Oil flow patterns of separated flow on a hemisphere-cylinder at incidence. DFVLR FB 84–20.Google Scholar
  9. Bodonyi, R.J. and Kluwick A. (1977) Freely interacting transonic boundary layers. Phys. Fluids 20, 1432–1437.ADSMATHMathSciNetGoogle Scholar
  10. Bodonyi, R.J. and Kluwick A. (1982) Supercritical transonic trailing-edge flow. Q. J. Mech. Appl. Math. 35, 265–277.MATHGoogle Scholar
  11. Bodonyi, R.J. (1979) Transonic laminar boundary-layer flow near convex corners. Q. J. Mech. Appl. Math. 22, 63–71.MathSciNetGoogle Scholar
  12. Bodonyi, R.J., Smith, F.T. and Kluwick, A. (1985) Axisymmetric flow past a slender body of finite length. Proc. R. Soc. Lond. A 400, 37–54.ADSMATHMathSciNetGoogle Scholar
  13. Bodonyi, R.J. and Smith, F.T. (1986) Shock-wave laminar boundary-layer interaction in supercritical transonic flow. Computers and Fluids 14, 97–108.MATHMathSciNetGoogle Scholar
  14. Bodonyi, R.J. and Kluwick, A. (1997) Transonic Trailing-Edge Flow. Q. J. Mech. Appl. Math. (in press)Google Scholar
  15. Bogucz, E.A. and Walker, J.D.A. (1988) The turbulent near wake at a sharp trailing edge. J. Fluid Mech. 196, 555–584.ADSMATHGoogle Scholar
  16. Brilliant, H.M. and Adamson, T.C. Jr. (1973) Shock Wave-Boundary Layer Interactions in Laminar Transonic Flow. AIAA Paper 73–239.Google Scholar
  17. Brown, S.N. and Stewartson, K. (1970) Trailing edge stall. J. Fluid Mech. 42, 561–584.ADSMATHGoogle Scholar
  18. Brown, S.N. and Stewartson, K. (1983) On an integral equation of marginal separation. SIAM J. Appl. Math. 43, 5, 1119–1126.MATHMathSciNetGoogle Scholar
  19. Brown, S.N. (1985) Marginal separation of a three-dimensional boundary layer on a line of symmetry. J. Fluid Mech. 158, 95–111.ADSMATHMathSciNetGoogle Scholar
  20. Bush, W.B. and Fendell, F.E. (1972) Asymptotic analysis of turbulent channel and boundary-layer flow. J. Fluid Mech. 56, 657–681.ADSMATHGoogle Scholar
  21. Bush, W.B. (1976) Axial incompressible flow past a body of revolution. Rocky Mt. J. Math. 6, 527.MATHMathSciNetGoogle Scholar
  22. Cassel, K.W., Ruban, A.I. and Walker, J.D.A. (1995) An instability in supersonic boundary-layer flow over a compression ramp. J. Fluid Mech. 300, 265–285.ADSMATHGoogle Scholar
  23. Cebeci, T.C, Stewartson, K. and Brown, S.N. (1983) Nonsimilar boundary layers on the leeside of cones at incidence. Computers and Fluids 11, 175–186.MATHGoogle Scholar
  24. Chen, H.C. and Patel, V.C. (1987) Laminar Flow at the Trailing Edge of a Flat Plate. AIAA J. 25, 920–928.ADSGoogle Scholar
  25. Cheng, H.K. (1961) The Shock Layer Concept and Three-Dimensional Hypersonic Boundary Layers. Rep. AF-1285-A-3, Cornell Aeronautical Laboratory.Google Scholar
  26. Chernyshenko, S.I. (1988) The asymptotic form of the stationary separated circumfluence of a body at high Reynolds number. Prikl. Matem. Mekh. 52, 958–966.MathSciNetGoogle Scholar
  27. Chernyshenko, S.I. and Castro, Ian P. (1993) High-Reynolds-number asymptotics of the steady flow through a row of bluff bodies. J. Fluid Mech. 257, 421–449.ADSMATHGoogle Scholar
  28. Chevray, R. and Kovasznay, L.S.G. (1969) Tubulence measurements in the wake of a thin flat plate. AIAA J. 7, 1641–1643.ADSGoogle Scholar
  29. Chow, R. and Melnik, R.E. (1976) Numerical Solutions of Triple-Deck Equations for Laminar Trailing-Edge Stall. Grumman Research Dept. Report RE-526J.Google Scholar
  30. Cole, J.D. (1968) Perturbation methods in applied mathematics, Blaisdell Publishing Company.MATHGoogle Scholar
  31. Cramer, M.S., Park, S.H. and Watson, L. (1997) Numerical Verification of of Scaling Laws for Shock-Boundary Layer Interactions in Arbitrary Gases. J. Fluids Engg. 119, 67–73.Google Scholar
  32. Dallmann, U. (1982) Topological structures of three dimensional separations. DFVLR FB 221–82-A07.Google Scholar
  33. Daniels, P.G. (1974) Numerical and asymptotic solutions for the supersonic flow near the trailing edge of a flat plate. Q. J. Mech. Appl. Math. 27, 175–191.MATHGoogle Scholar
  34. Dennis, S.C. (1973) private communication to Melnik, R.E. and Chow, R.Google Scholar
  35. Duck, P.W. (1984) The effect of a surface discontinuity on an axisymmetric boundary layer. Q. J. Mech. Appl. Math. 37, 57–74.MATHMathSciNetGoogle Scholar
  36. Duck, P.W. and Burggraf, O. (1986) Spectral solutions for three-dimensional triple-deck flow over surface topography. J. Fluid. Mech. 162, 1–22.ADSMATHMathSciNetGoogle Scholar
  37. Duck, P.W. (1989) Three-dimensional marginal separation. J. Fluid Mech. 202, 559–575.ADSMATHMathSciNetGoogle Scholar
  38. Fiddes, S.P. (1980) A theory of separated flow past a slender elliptic cone at incidence. AGARD C-P paper 30, Sept/Oct., Colorado Springs, USA.Google Scholar
  39. Gersten, K. (1989) Die Bedeutung der Prandtlschen Grenzschichttheorie nach 85 Jahren. Z. Flugwiss. Weltraumforsch. 13, 209–218.MATHGoogle Scholar
  40. Gittler, Ph. and Kluwick, A. (1987a) Triple-deck solutions for supersonic flows past flared cylinders. J. Fluid Mech. 179, 469–487.ADSGoogle Scholar
  41. Gittler, Ph. and Kluwick, A. (1987b) Nonuniqueness of triple-deck solutions for axisymmetric supersonic flow with separation. in: Boundary Layer Separation; IUTAM Symposium London 1986, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  42. Gittler, Ph. and Kluwick, A. (1989) Interacting laminar boundary layers in quasi-two-dimensional flow. Fluid Dynamics Research 5, 29–47.ADSGoogle Scholar
  43. Gittler, Ph. and Kluwick, A. (1997) Viscous-inviscid interaction on a slender axisymmetric trailing tip flow. Proc. R. Soc. Lond. A 453, 963–982.ADSMATHMathSciNetGoogle Scholar
  44. Glauert, M.B. and Lighthill, M.J. (1955) The axisymmetric boundary layer on a long thin cylinder. Proc. R. Soc. Lond. A 230, 188–203.ADSMATHMathSciNetGoogle Scholar
  45. Goldstein, S. (1930) Concerning some solutions of the boundary-layer equations in hydrodynamics. Proc. Camb. Phil. Soc. 26, 1–30.ADSMATHGoogle Scholar
  46. Goldstein, S. (1948) On laminar boundary layer flow near a point of separation. Q. J. Mech. Appl. Math. 1, 43–69.MATHGoogle Scholar
  47. Gurevich, M.I. (1966) The Theory of jets in an ideal fluid. Pergamon Press.Google Scholar
  48. Hackmüller, G. and Kluwick A. (1989) The effect of a surface mounted obstacle on marginal separation. Z. Flugwiss. Weltraumforsch. 13, 365–370.Google Scholar
  49. Hackmüller, G. and Kluwick A. (1990) Effects of 3-D surface mounted obstacles on marginal separation, in: Separated Flows and Jets, IUTAM Symposium Novorsi-birsk/USSR, eds. Kozlov, V.V., Dovgal, A.V., Springer-Verlag, Berlin-Heidelberg, 55–65.Google Scholar
  50. Hackmüller, G. (1991) Zwei- und dreidimensionale Ablösung von Strömungsgrenzschichten. Dissertation, TU Wien.Google Scholar
  51. Hackmüller, G. and Kluwick A. (1991) Marginal Separation in Quasi-two-dimensional Flow, in: Trends in Applications of Mathematics to Mechanics, Part III, eds. Schneider, W., Troger, H., Ziegler, F., Longman Scientific & Technical, England, 143–149.Google Scholar
  52. Hakkinen, R.J., Greber I., Trilling, L. and Ababanel, S.S. (1959) The Interaction of an Oblique Shock with a Laminar Boundary Layer. Nat. Aeronaut. Space Admin. Memo 2–18–59W.Google Scholar
  53. Herwig, H. (1982) Die Anwendung der asymptotischen Theorie auf laminare Strömungen mit endlichen Ablösegebieten. Z. Flugwiss. Weltraumforsch. 6, 266–279.MATHGoogle Scholar
  54. Hornung, H.G. and Perry, A.E. (1984) Some aspects of three-dimensional separation, Part I: Streamsurface bifurcation. Z. Flugwiss. Weltraumforsch. 8, 77–78.Google Scholar
  55. Horton, H.P. (1971) Adiabatic laminar boundary-layer/shock-wave interactions on flared axisymmetric bodies. AIAA J. 9, 2141–2148.ADSMATHGoogle Scholar
  56. Janour, Z. (1951) Resistance of a plate in parallel flow at low Reynolds-numbers. NACA TM 1316.Google Scholar
  57. Jobe, C.E. and Burggraf, O.R. (1974) The numerical solution of the asymptotic equations of trailing edge flow. Proc. R. Soc. A. 340, 91–111.ADSMATHGoogle Scholar
  58. Karman, Th. von (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse 58, 58–68.Google Scholar
  59. Katzer, E. (1989) On the length scales of laminar shock/boundary layer interaction. J. Fluid Mech. 206, 477–496.ADSGoogle Scholar
  60. Kazakia, He.J. and Walker, J.D. (1995) An asymptotic two-layer model for supersonic turbulent boundary layers. J. Fluid Mech. 295, 159–198.ADSMATHGoogle Scholar
  61. Kirchhoff, G. (1869) Zur Theorie freier Flüssigkeitsstrahlen. J. reine angew. Math. 70, 289.MATHGoogle Scholar
  62. Kluwick, A. (1979) Stationäre, laminare wechselwirkende Reibungsschichten. Z. Flugwiss. Weltraumforsch. 3, 157–174.MATHGoogle Scholar
  63. Kluwick, A. (1985) On the nonlinear disortion of waves generated by interacting supersonic boundary layers. Acta Mechanica 55, 177–189.MathSciNetGoogle Scholar
  64. Kluwick, A. (1989) Marginal separation of laminar axisymmetric boundary layers. Z. Flugwiss. Weltraumforsch. 13, 254–259.Google Scholar
  65. Kluwick, A. (1994) Interacting laminar boundary layers in dense gases. Acta Mechanica [Suppl.] 4, 335–349.Google Scholar
  66. Kluwick, A. (ed.) (1991) Nonlinear Waves in Real Fluids. Springer-Verlag, Wien-Heidelberg-New York.MATHGoogle Scholar
  67. Kluwick, A. and Reiterer, M. (1998) On Three-dimensional Marginal Separation, To appear in ZAMM.Google Scholar
  68. Kluwick, A. and Stross, N. (1984) Interaction between a weak oblique shock wave and a turbulent boundary layer in purely supersonic flow. Acta Mechanica 53, 37–56.Google Scholar
  69. Kluwick, A. and Wohlfart, H. (1984) Entry flow in weakly curved ducts. Ingenieur-Archiv 54, 107–120.ADSMATHGoogle Scholar
  70. Kluwick, A. and Wohlfahrt, H. (1986) Hot-wire-anemometer study of the entry flow in a curved duct. J. Fluid Mech. 165, 335–353.ADSGoogle Scholar
  71. Kluwick, A., Gittler, Ph. and Bodonyi, R.J. (1984) Viscous-inviscid interactions on axisymmetric bodies of revolution in supersonic flow. J. Fluid Mech. 140, 281–301.ADSMATHGoogle Scholar
  72. Kluwick, A., Gittler, Ph. and Bodonyi, R.J. (1985) Freely interacting axisymmetric boundary layers on bodies of revolution. Q. J. Mech. Appl. Math. 38, 575–588.MATHMathSciNetGoogle Scholar
  73. Kluwick, A., Gittler, Ph. and Bodonyi, R.J. (1994) Viscous-inviscid laminar interaction near the trailing tip of an axisymmetric body, in: Advances in Analytical Methods in Modeling of Aerodynamic Flows, Walker, J.D.A.; Burnett, M.; Smith, F.T. eds, American Institute of Aeronatuics and Astronautics.Google Scholar
  74. Kluwick, A., Reiterer, M. and Hackmüller, G. (1997) Marginal separation caused by three-dimensional surface mounted obstacles. Proc. of the 2nd International Conference on Asymptotics in Mechanics, St. Petersburg 1996, pp. 113–120.Google Scholar
  75. Korolev, G.L. (1980) Numerical solution to the asymptotic problem of separation of a laminar boundary layer from a smooth surface. Uch. Zap. TsAGI, 11, 27.MathSciNetGoogle Scholar
  76. Korolev, G.L. (1983) Flow in the neighbourhood of the trailing edge of a plate in a transonic flow of viscous gas. Fluid Dynamics 18, 355–360.ADSMATHGoogle Scholar
  77. Korolev, G.L. (1989) Contribution to the theory of thin profile trailing edge separation. Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza 4, 55–59.Google Scholar
  78. Korolev, G.L. and Sychev, Vik.V. (1993) Asymptotic theory of the flow near the rear end of a slender axisymmetric body. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 5, 68–77.MathSciNetGoogle Scholar
  79. Leblanc, R. and Ginoux, J. (1970) Influence of cross flow on two dimensional separation. Von Karman Institute for Fluid Dynamics, TN 62.Google Scholar
  80. Legendre, R. (1956) Séparation de l’ecoulement laminaire tridimensionnel. La Recherche Aéronautique No 54, 3–8.Google Scholar
  81. Lighthill, M.J. (1953) On boundary layers and upstream influence II. Supersonic flows without separation. Proc. R. Soc. A 217, 478–507ADSGoogle Scholar
  82. Lighthill, M.J. (1963) Attachement and separation in three-dimensional flow, in: Laminar boundary layers (ed.: L. Rosenhead), 72–82, Oxford Univ. Press, Oxford 1963.Google Scholar
  83. Liou, M.S. and Adamson, F.C. Jr. (1980) Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part II: Wall shear stress, ZAMP 31, 227–246.ADSMATHGoogle Scholar
  84. Maise, G. and McDonald, H. (1968) Mixing Length and Kinematic Eddy Viscosity in a Compressible Boundary Layer. AIAA J. 6, 73–80.ADSGoogle Scholar
  85. McLachlan, R.I. (1991) The boundary layer in a finite plat plate. Phys. Fluids A 3, 341–348.ADSMATHGoogle Scholar
  86. Mellor, G.L. and Gibson, D.M. (1966) Equilibrium turbulent boundary layers. J. Fluid Mech. 10, 225–253.ADSGoogle Scholar
  87. Mellor, G.L. (1972) The large Reynolds number asymptotic theory of turbulent boundary layers. Int. J. Engr. Sci. 10, 851–873.MathSciNetGoogle Scholar
  88. Melnik, R.E. (1978) Wake curvature and trailing edge interaction effects in viscous flow over airfoils. Advances Technology Airfoil Research Conference, NASA CP-2045, Part I.Google Scholar
  89. Melnik, R.E. (1980) Turbulent interactions on airfoils at transonic speeds — recent developments. AGARD CP-291: Computations of viscous-inviscid interactions, paper No. 10.Google Scholar
  90. Melnik, R.E. and Grossman, B. (1974) Analysis of the Interaction of a Weak Normal Shock Wave with a Turbulent Boundary Layer. AIAA Paper No. 74–598.Google Scholar
  91. Melnik, R.E. and Chow, R. (1975) Asymptotic Theory of Two Dimensional Trailing Edge Flows. NASA SP-347.Google Scholar
  92. Melnik, R.E. and Grossman, B. (1976) Further developments in an analysis of the interaction of a weak normal shock wave with a turbulent boundary layer. Symposium Transsonicum II, (eds.: K. Oswatitsch and D. Rues), Springer-Verlag, 262–272.Google Scholar
  93. Melnik, R.E., Chow, R. and Mead, H.R. (1977) theory of Viscous Transonic Flow Over Airfoils at High Reynolds Number. AIAA Paper No. 77–680.Google Scholar
  94. Melnik, R.E., Chow, R., Mead, H.R. and Jameson, A. (1985) An Improved Vis-cid/Inviscid Interaction Procedure for Transonic Flow Over Airfoils. NASA Contractor Report 3805.Google Scholar
  95. Melnik, R.E., Siclari, M.J. and Cusic, R.L. (1985) An Asymptotic Theory of Supersonic Turbulent Interactions in a Compression Corner. Grumman Research Department Report RE-711.Google Scholar
  96. Messiter, A.F. (1970) Boundary layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18, 241–257.MATHGoogle Scholar
  97. Messiter, A.F., Feo, A. and Melnik, R.E. (1971) Shock-wave strength for separation of a laminar boundary layer at transonic speeds. AIAA J. 9, 1197–1198.ADSGoogle Scholar
  98. Messiter, A.F. (1980a) Asymptotic Theory of Turbulent Boundary-Layer Interactions. 4th Canadian Symposium on Fluid Dynamics, Calgary, June 9–12.Google Scholar
  99. Messiter, A.F. (1980b) Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part I: Pressure distribution. ZAMP 31, 204–226.ADSMATHGoogle Scholar
  100. Messiter, A.F. (1983) Boundary-layer interaction theory. ASME J. Appl. Mech. 50, 1104–1113.ADSMATHGoogle Scholar
  101. Moore, F.K. (1953) Laminar boundary layer on cone in supersonic flow at large angle of attack. NACA Rept. No. 1132.Google Scholar
  102. Murdock, J.W. (1972) The solution of sharp-cone boundary-layer equations in the plane of symmetry. J. Fluid Mech. 54, 665–678.ADSMATHGoogle Scholar
  103. Neiland, V.Ya (1969) Towards a theory of separation of the laminar boundary layer in a supersonic stream. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 4.Google Scholar
  104. Neiland, V.Ya (1981) Asymptotic theory of the separation and the boundary layer supersonic gas flow interaction. Advances in Mechanics 4, 1–62.Google Scholar
  105. Oswatitsch, K. and Wieghardt, K. (1941) Theoretische Untersuchungen über stationäre Potentialströmungen und Grenzschichten. Bericht der Lilienthal- Gesellschaft für Luftfahrtforschung.Google Scholar
  106. Oswatitsch, K. (1958) Die Ablösebedingungen von Grenzschichten. In Grenzschichtforschung (ed. H. Görtier). IUTAM Symposium, Freiburg 1957, 357–367. Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  107. Park, S.H. (1994) Viscous-Inviscid Interactions in Dense Gases. Ph. D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.Google Scholar
  108. Perry, A.E. and Chong, M.S. (1986) A Series-Expansion Study of the Navier-Stokes Equations with Applications to Three-Dimensional Separation Patterns. J. Fluid Mech. 173, 207–223.ADSMATHMathSciNetGoogle Scholar
  109. Pot, P.J. (1979) Measurements in a 2D wake and in a 2D wake merging into a boundary layer. Rep. NLR TR 79063 U. National Aerospace Laboratory NLR, Netherlands.Google Scholar
  110. Prandtl, L. (1904) Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandl. d. III. Intern. Mathem. Kongresses, Heidelberg, 484–491.Google Scholar
  111. Prandtl, L. (1933) Neuere Ergebnisse der Turbulenzforschung. Z. VDI 77, 105–114.Google Scholar
  112. Ramaprian, B.R., Patel, V.C. and Sastry, M.S. (1981) Turbulent wake development behind streamlined bodies. Iowa Institute of Hydraulic Research Rep. 231. University of Iowa, Iowa City.Google Scholar
  113. Riley, N. (1979) Separation from a smooth surface in a slender conical flow. J. Eng. Math., 13, 75–91.MATHMathSciNetGoogle Scholar
  114. Rizzetta, D.P., Burggraf, O.R. and Jenson, R. (1978) Triple-deck solutions for viscous supersonic and hypersonic flow past corners. J. Fluid Mech. 89, 535–552.ADSGoogle Scholar
  115. Robinson, J.L. (1969) Similarity solutions in several turbulent shear flows. Rep. 1242. National Physical Laboratory, Teddington, UK.Google Scholar
  116. Roux, B. (1972) Supersonic laminar boundary layer near the plane of symmetry of a cone at incidence. J. Fluid Mech 51, 1–14.ADSMATHGoogle Scholar
  117. Rubin, S.G., Lin, T.C. and Tarulli, F. (1977) Symmetry Plane Viscous Layer on a Sharp Cone. AIAA J. 15, 204–211.ADSMATHGoogle Scholar
  118. Ruban, A.I. (1978) Numerical solution of the local asymptotic problem of the unsteady separation of a laminar boundary layer in a supersonic flow. USSR Comput. Maths Math. Phys. 18, 175–187.MathSciNetGoogle Scholar
  119. Ruban, A.I. (1981a) Singular solution of boundary layer equations which can be extended continously throug the point of zero surface friction. Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza 6, 42–52.MathSciNetGoogle Scholar
  120. Ruban, A.I., (1981b) Asymptotic theory of short separation regions on the leading edge of a slender airfoil. Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza 1, 42–51.MathSciNetGoogle Scholar
  121. Smith, F.T. and Duck, P. (1977) Separation of jets on thermal boundary layers from a wall. Q. J. Mech. Appl. Math. 30, 143–156.MATHMathSciNetGoogle Scholar
  122. Smith, F.T., Sykes, R.I. and Brighton, P.W.M. (1977) A two-dimensional boundary layer encountering a three-dimensional hump. J. Fluid Mech. 83, 163–176.ADSMATHGoogle Scholar
  123. Smith, F.T. (1977) The laminar separation of an imcompressible fluid streaming past a smooth surface. Proc. R. Soc. Lond. A 356, 433–463.ADSGoogle Scholar
  124. Smith, F.T. (1978) Three-dimensional viscous and inviscid separation of a vortex sheet from a smooth non-slender body. RAE TR 78095, 33.Google Scholar
  125. Smith, F.T. (1979) Laminar flow of an incompressible fluid past a bluff body: the separation, reattachement, eddy properties and drag. J. Fluid Mech. 92, 171–205.ADSMATHGoogle Scholar
  126. Smith, F.T. (1982) On the high Reynolds number theory of laminar flows. IMA J. of Appl. Maths. 28, 207–281.ADSMATHGoogle Scholar
  127. Smith, F.T. and Merkin, J.H. (1982) Triple deck solutions for subsonic flow past humps, steps, concave or convex corners, and wedged trailing edges. Computers and Fluids 10, 7–25.MATHMathSciNetGoogle Scholar
  128. Smith, F.T. (1983) Interacting flow and trailing edge separation — no stall. J. Fluid Mech. 131, 219–249.ADSMATHGoogle Scholar
  129. Smith, F.T. (1985) A structure of laminar flow past a bluff body at high Reynolds number. J. Fluid Mech. 155, 175–191.ADSMATHGoogle Scholar
  130. Smith, F.T. (1987) Theory of High-Reynolds-Number Flow past a Blunt Body, in: Studies of Vortex Dominated Flows, (eds.: M.Y. Hussaini and M.D. Salas), Springer-Verlag. 87–107.Google Scholar
  131. Smith, F.T. (1988) A reversed-flow singularity in interacting boundary layers. Proc. R. Soc. Lond. A 420, 21–52.ADSMATHGoogle Scholar
  132. Smith, F.T. and Khorrami A. Farid (1991) The interactive breakdown in supersonic ramp flow. J. Fluid Mech. 224, 197–215.ADSMATHMathSciNetGoogle Scholar
  133. Smith, J.H.B. (1977) Behaviour of a vortex sheet separating from a smooth surface, RAE TR 77058, 1–62.Google Scholar
  134. Stewartson, K. (1955) The asymptotic boundary layer on a circular cylinder in axial incompressible flow. Q. appl. Math. 13, 113–122.MATHMathSciNetGoogle Scholar
  135. Stewartson, K. (1969) On the flow near the trailing edge of a flat plate II. Mathematika 16, 106–121.MATHGoogle Scholar
  136. Stewartson, K. and Williams, P.G. (1969) Self-induced separation. Proc. Roy. Soc. A 312, 181–206.ADSMATHGoogle Scholar
  137. Stewartson, K. (1970) On laminar boundary layers near corners. Q. J. Mech. Appl. Math 23, 137–152.MATHGoogle Scholar
  138. Stewartson, K. (1970) Is the singularity at separation removeable. J. Fluid Mech. 44, 347–367.ADSMATHGoogle Scholar
  139. Stewartson, K. (1971) Corrections and an addition. Q. J. Mech. Appl. Math 24, 387–389.MATHGoogle Scholar
  140. Stewartson, K. (1974) Multistructured boundary layers on flat plates and related bodies. Advances in Appl. Mech. 14, 145–139.Google Scholar
  141. Stewartson, K., Cebeci, T.C. and Chang, K.C. (1980) A boundary-layer collision in a curved duct. Q. J. Mech. Appl. Math 33, 59–75.MATHMathSciNetGoogle Scholar
  142. Stewartson, K., Smith, F.T. and Kaups, K. (1982) Marginal separation. Stud. Appl. Math. 67, 45–61.MATHMathSciNetGoogle Scholar
  143. Stewartson, K. and Simpson, C.J. (1982) On a singularity initiating a boundary-layer collision. Q. J. Mech. Appl. Math 35, 1–16.MATHMathSciNetGoogle Scholar
  144. Sychev, V.V. (1972) Concerning laminar separation. Izv. Akad. Nauk. SSSR, Mekh. Zhidk Gaza 3, 47–59.Google Scholar
  145. Sychev, V.V, Ruban, A.I., Sychev, Vik.V. and Korolev, G.I. (1987) Asymptotic theory of separating flows. Nauka.Google Scholar
  146. Sychev, Vik.V. (1990) Flow near the rear end of a slender body. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 5, 10–18.ADSMathSciNetGoogle Scholar
  147. Sychev, Vik.V. (1991) Asymptotic theory of a flow near the trailing tip of a slender axisymmetric body. In: Separated Flows and Jets. IUTAM Symposium Novosibirsk/USSR 1990, eds. Kozlov, V.V., Dovgal A.V., Springer-Verlag, Berlin-Heidelberg-New-York.Google Scholar
  148. Sykes, R.I. (1980a) On the three-dimensional boundary layer flow over surface irregularities. Proc. R. Soc. Lond. A 373, 311–329.ADSMATHMathSciNetGoogle Scholar
  149. Sykes, R.I. (1980b) An asymptotic theory of incompressible turbulent boundary-layer flow over a small hump. J. Fluid Mech. 101, 647–670.ADSMATHMathSciNetGoogle Scholar
  150. Taganov, G.I. (1968) Contribution to the theory of stationary separation zones. Fluid Dyn. 3, 1–11.ADSGoogle Scholar
  151. Taganov, G.I. (1970) On limiting flows of a viscous fluid with stationary separation for Re → ∞. Uch. Zap. TsAGI 1, 1–14.Google Scholar
  152. Timoshin, S.N. (1985) Laminar flow in the vicinity of a surface slope discontinuity on an elongated body of revolution. Utschenic Zapiski Tsagi 16, 10–21.ADSGoogle Scholar
  153. Timoshin, S.N. (1986) Interaction between the boundary layer on an elongated body of revolution and the external flow. Utschenic Zapiski Tsagi 17, 33–41.ADSGoogle Scholar
  154. Van Driest, E.R. (1951) Turbulent Boundary Layer in Compressible Fluids. J. Aero. Sci. 18, 145–160.MATHGoogle Scholar
  155. Vatsa, V. and Werle, M. (1977) Quasi-three-dimensional laminar boundary layer separations in supersonic flow. Trans. ASME J. Fluid Eng. 99, 634–639.Google Scholar
  156. Veldman, A.E.P. and Van de Vooren A.I. (1975) Drag of a Finite Flat Plate. Lecture notes in Physics 35, 423–430, Springer-Verlag, Berlin-Heidelberg- New York.Google Scholar
  157. Wang, K.C. (1971) On the determination of zones of influence and dependence for three-dimensional boundary-layer equations. J. Fluid Mech. 48, 397–404.ADSMATHGoogle Scholar
  158. Whitlock, S.T. (1992) Compressible Flows of Dense Gases. M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.Google Scholar
  159. Yajnik, K. (1970) Asymptotic theory of turbulent shear flows. J. Fluid Mech. 42, 411–427.ADSMATHGoogle Scholar
  160. Zametaev, V.B. (1986) Singular solution of equations of a boundary layer on a slender cone. Izv. Akad. Nauk SSSR, Mekh. Zhid Gaza 2, 65–72.Google Scholar
  161. Zametaev, V.B. (1987) Local separation on a slender cone preceding the appearance of a vortex sheet. Izv. Akad. Nauk SSSR, Mekh. Zhid Gaza 6, 21–28.Google Scholar
  162. Zametaev, V.B. (1989) Formation of singularities in a three-dimensional boundary layer. Izv. Akad. Nauk. SSR. Mekh. Zhidk. Gaza 58–64.Google Scholar
  163. Zametaev, V.B. and Sychev, Vik.V (1995) Three-dimensional separation in the neighbourhood of roughness on the surface of an axisymmetric body. Fluid Dynamics 30, 387–398.ADSMATHMathSciNetGoogle Scholar
  164. Zieher, F. (1993) Laminare Grenzschichten in schweren Gasen. M.S. Thesis Technical University of Vienna.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • A. Kluwick
    • 1
  1. 1.Technical University of ViennaViennaAustria

Personalised recommendations