Advertisement

Turbulent Boundary Layers II

Further Developments
  • J. D. A. Walker
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 390)

Abstract

In this chapter, asymptotic analysis is used to consider various aspects of turbulent boundary layers in the limit of large Reynolds number. Turbulent wall-bounded shear flows are common in engineering practice and, although such motions can be very complex, generic trends are exhibited over a wide range of Reynolds numbers. In such circumstances, asymptotic theory is an essential tool for revealing the critical aspects of boundary-layer structure, as well as the dominant physical processes in the turbulence. In the following six sections, specific issues related to both the prediction and physics of turbulent shear flows near walls will be addressed. In §2, some of the classical results for two-dimensional incompressible flows will be reviewed and extended; special emphasis is placed on the minimum information and the numerical algorithms that are required to structure a prediction scheme for such flows; this chapter forms a basis for the more complicated types of boundary layers considered in subsequent sections. In §3, a model for the mean flow profile in the near-wall region of the boundary layer is described; this model is based on the observed coherent structure of the wall-layer flow and provides a simple alternative to conventional mixing-length formulations. In §4, the case of incompressible two-dimensional flow with heat transfer at the wall is addressed; the asymptotic theory constrains the types of models that can be used in the energy equation and provides an effective way to determine the heat transfer at the surface in a prediction method.

Keywords

Wall Shear Stress Reynolds Stress Turbulent Boundary Layer Eddy Viscosity Wall Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlichting, H. L.: Boundary Layer Theory, McGraw-Hill, 6th Edition (1968).Google Scholar
  2. 2.
    Hinze, J. O.: Turbulence, McGraw-Hill, 2nd Edition (1975).Google Scholar
  3. 3.
    White, F. M.: Viscous Flow Theory, McGraw-Hill, 2nd Edition (1996).Google Scholar
  4. 4.
    Barenblatt, G. I., Chorin, A. J. and Prostokishin, V. M.: Scaling laws for fully-developed turbulent flow in pipes: Discussion of experimental data, Proc. Nat. Acad. Sci. U.S.A., 94 (1997), 773–776.ADSCrossRefMATHGoogle Scholar
  5. 5.
    Fendell, F. E.: Singular perturbation and turbulent shear flow near walls, J. Astro. Sciences 20 (1972), 129–165.ADSGoogle Scholar
  6. 6.
    Mellor, G. L.: The large Reynolds number, asymptotic theory of turbulent boundary layers, Int. J. Engng. Sci. 10 (1972), 851–873.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Melnik, R. E.: Turbulent interactions on airfoils at transonic speeds — recent developments, Computation of Viscous-Inviscid Interactions, AGARD-CP-291 (1981), Chapter 10.Google Scholar
  8. 8.
    Degani, A. T., Smith, F. T. and Walker, J. D. A.: The structure of a three-dimensional turbulent boundary layer, J. Fluid Mech. 250 (1993), 43–68.ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cebeci, T. and Smith, A. M. O.: Analysis of Turbulent Boundary Layers, Academic Press (1974).MATHGoogle Scholar
  10. 10.
    Mellor, G. L. and Gibson, D. M: Equilibrium turbulent boundary layers, J. Fluid Mech. 24 (1966), 225–253.ADSCrossRefGoogle Scholar
  11. 11.
    Baldwin, B. S. and Lomax, H.: Thin layer approximation and algebraic model for turbulent separated flows, AIAA Paper 78–257 (1978).Google Scholar
  12. 12.
    He, J. and Walker, J. D. A.: A note on the Baldwin-Lomax turbulence model, Trans. ASME, J. Fluids Engng. 117 (1995), 528–531.CrossRefGoogle Scholar
  13. 13.
    Yuhas, L. J. and Walker, J. D. A.: An optimization technique for the development of two-dimensional steady turbulent boundary layer models, Rep. FM-1, Dept. Mech. Engrg., Lehigh U. (1982); also AFOSR-TR-0417.Google Scholar
  14. 14.
    Walker, J. D. A., Ece, M. C. and Werle, M. J.: An embedded function approach for turbulent flow prediction, AIAA J. 29 (1991), 1810–1818.ADSCrossRefMATHGoogle Scholar
  15. 15.
    Anderson, P. S., Kays, W. M. And Moffatt, R. J.: The turbulent boundary layer on a porous plate: An experimental study of the fluid mechanics for adverse free-stream pressure gradients (1972), Mech. Engng. Rpt. NMT-15, Stanford University.Google Scholar
  16. 16.
    Kline, S. J., Morkovin, M. V., Sovran, G. and Cockrell, P. S.: Proceedings, Computation of turbulent boundary layers — 1968, AFOSR-IFP-Stanford Conference, Dept. Mech. Engng., Stanford University (1969).Google Scholar
  17. 1.
    Van Driest, E. R.: On turbulent flow near a wall, J. Aero. Sci. 23 (1956), 1007–1011, 1036.CrossRefMATHGoogle Scholar
  18. 2.
    Cebeci, T. and Smith, A. M. O.: Analysis of turbulent boundary layers, Academic Press, New York (1974).MATHGoogle Scholar
  19. 3.
    Kline, S. J., Reynolds, W. C, Schraub, F. A. and Rundstadler, P. W.: The structure of turbulent boundary layers, J. Fluid Mech. 30 (1967), 741–773.ADSCrossRefGoogle Scholar
  20. 4.
    Smith, C. R., Walker, J. D. A., Haidari, A. H. and Sobrun, U.: On the dynamics of near-wall turbulence, Phil. Trans. R. Soc. Lond. A 336 (1991), 131–175.ADSCrossRefMATHGoogle Scholar
  21. 5.
    Walker, J. D. A.: Wall layer eruptions in turbulent flows, Structure of Turbulence and Drag Reduction (A. Gyr, ed.), Springer-Verlag (1990), 109–118.CrossRefGoogle Scholar
  22. 6.
    Chapman, D. R. and Kuhn, G. D.: The limiting behavior of turbulence near a wall, J. Fluid Mech. 170 (1986), 265–292.ADSCrossRefMATHGoogle Scholar
  23. 7.
    Walker, J. D. A. and Herzog, S.: Eruption mechanism for turbulent flows near walls, Proc. 2nd Int. Symp. on Transport Phenomena in Turbulent Flows (M. Hirata and V. Kasagi, eds.) (1988), 145–156.Google Scholar
  24. 8.
    Brinckman, K. W. and Walker, J. D. A.: Breakup and instability in a high Reynolds number flow, AIAA Paper 96–2156 (1996).Google Scholar
  25. 9.
    Walker, J. D. A., Abbott, D. E., Scharnhorst, R. R. and Weigand, G. G.: Wall-layer model for the velocity profile in turbulent flows, AIAA J. 27 (1989), 140–149.ADSCrossRefGoogle Scholar
  26. 10.
    Black, T. J.: An analytical study of the measured pressure field under supersonic turbulent boundary layers, NASA CR-888 (1968).Google Scholar
  27. 11.
    Sandborn, V. A. and Liu, C. Y.: On turbulent boundary layer separation, J. Fluid Mech. 32 (1968), 293–304.ADSCrossRefGoogle Scholar
  28. 12.
    Schubauer, G. B.: Turbulent processes as observed in boundary layer and pipe, J. Appl. Physics 25 (1954), 188–196.ADSCrossRefGoogle Scholar
  29. 13.
    Walker, J. D. A., Ece, M. C. and Werle, M. J.: An embedded function approach for turbulent flow prediction, AIAA J. 29 (1991), 1810–1818.ADSCrossRefMATHGoogle Scholar
  30. 1.
    Weigand, G.G.: Forced convection in a two-dimensional nominally steady turbulent boundary layer, Ph.D. Thesis, Purdue University (1978).Google Scholar
  31. 2.
    Blackwell, B.F., Kays, W. M. and Moffat, R J.: The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients, Rept. HMT-16 Stanford U. (1972).Google Scholar
  32. 3.
    Thielbahr, W. H., Kays, W. M. and Moffat, R. J.: The turbulent boundary layer: Experimental heat transfer with blowing, suction and favorable pressure gradient, Rept. HMT-5, Stanford U. (1969).Google Scholar
  33. 4.
    Cebeci, T. and Smith, A. M. O.: Analysis of turbulent boundary layers, Academic Press, New York, 1974.MATHGoogle Scholar
  34. 5.
    Launder, B. E.: Heat and mass transport, in Topics in Applied Physics 12, Turbulence, P. Bradshaw (ed.), Springer-Verlag (1976), pp. 232–287.Google Scholar
  35. 6.
    Crawford, M. E. and Kays, W. M.: Convective Heat and Mass Transfer (1980), McGraw-Hill.Google Scholar
  36. 7.
    He, J., Kazakia, J. Y. and Walker, J. D. A.: An asymptotic model for supersonic turbulent boundary layers, J. Fluid Mech. 295 (1995), pp. 159–198.ADSCrossRefMATHGoogle Scholar
  37. 1.
    Walker, J. D. A.: Turbulent flow structure near walls, Phil. Trans. Roy. Soc. Lond. A 336 (1991).Google Scholar
  38. 2.
    Robinson, S.K.: Coherent motions in the turbulent boundary layer, Ann. Rev. Fluid Mech. 23 (1991), 601–639.ADSCrossRefGoogle Scholar
  39. 3.
    Robinson, S.K.: The kinematics of turbulent boundary layer structure, NASA Tech. Memo 103859 (1991).Google Scholar
  40. 4.
    Panton, R. L.: Self-sustaining mechanisms of turbulent boundary layers, Computational Mechanics Publications, Southampton, U.K. (1997).Google Scholar
  41. 5.
    Zang, T. A.: Numerical simulation of the dynamics of a turbulent boundary layer: perspectives of a transition simulator, Phil. Trans. Roy. Soc. Lond. A 336 (1991), 95–102.ADSCrossRefMATHGoogle Scholar
  42. 6.
    Smith, C. R, Walker, J. D. A., Haidari, A. H. and Sobrun, U.: On the dynamics of near-wall turbulence, Phil. Trans. Roy. Soc. Lond. A 336 (1991), 131–173.ADSCrossRefMATHGoogle Scholar
  43. 7.
    Theodorsen, T.: Mechanism of turbulence. Proc. 2nd Midwestern Conf. on Fluid Mechanics, Bull. No. 149, Ohio State University (1952).Google Scholar
  44. 8.
    Black, T. J.: An analytical study of the measured wall pressure field under supersonic turbulent boundary layers, NASA-CR 888 (1968).Google Scholar
  45. 9.
    Smith, C. R. and Walker, J. D. A.: Sustaining mechanisms of turbulent boundary layers: The role of vortex development and interactions in self-sustaining mechanism of wall turbulence, R. L. Panton (ed.), Computational Mechanics Publication (1997).Google Scholar
  46. 10.
    Hon, T. L. and Walker, J. D. A.: Evolution of hairpin vortices in a shear flow, Computers and Fluids 20 (1991), 343–358.ADSCrossRefMATHGoogle Scholar
  47. 11.
    Smith, C. R. and Walker, J. D. A.: Turbulent wall-layer vortices, in Fluid Vortices, S. I. Green (ed.), Kluwer Acad. Pub. (1995), 235–290.CrossRefGoogle Scholar
  48. 12.
    Doligalski, T. L., Smith, C. R. and Walker, J. D. A.: Vortex interactions with walls, Ann. Rev. Fluid Mechs. 26 (1994), 573–616.ADSCrossRefMathSciNetGoogle Scholar
  49. 13.
    Cowley, S. J., van Dommelen, L. L. and Lam, L. L.: On the use of Lagrangian variables in descriptions of unsteady boundary-layer separation”, Phil. Trans. Roy Soc. Lond. A 333 (1991), 343–378.ADSCrossRefGoogle Scholar
  50. 14.
    Van Dommelen, L. L. and Cowley, S. J.: On the Lagrangian description of unsteady boundary-layer separation. Part 2. General Theory, J. Fluid Mech. 210, 593–626.Google Scholar
  51. 1.
    Fernholz, H. H. and Vagt, J.-D.: Turbulence measurements in an adverse-pressure-gradient three-dimensional boundary layer along a circular cylinder, J. Fluid Mech. 111 (1981), 233–269.ADSCrossRefGoogle Scholar
  52. 2.
    Van den Berg, B., Elsenaar, A., Lindhout, J. P. F. and Wesseling, P.: Measurements in an incompressible turbulent boundary layer, under infinite swept-wing conditions, and comparisons with theory, J. Fluid Mech. 70 (1975), 127–147.ADSCrossRefGoogle Scholar
  53. 3.
    Degani, A. T., Smith, F. T. and Walker, J. D. A.: The three-dimensional turbulent boundary layer near a plane of symmetry, J. Fluid Mech., 234 (1992), 329–360.ADSCrossRefMATHMathSciNetGoogle Scholar
  54. 4.
    Degani, A. T., Smith, F. T. and Walker, J. D. A.: The structure of a three-dimensional turbulent boundary layer, J. Fluid Mech. 250 (1993), 43–68.ADSCrossRefMATHMathSciNetGoogle Scholar
  55. 5.
    Degani, A. T. and Walker, J. D. A.: Computation of attached three-dimensional turbulent boundary layers, J. Comp. Physics 109 (1993), 202–214.ADSCrossRefMATHGoogle Scholar
  56. 6.
    Pierce, F. J., McAllister, J. E. and Tennant, M. H.: A review of near-wall similarity models in three-dimensional turbulent boundary layers, Trans. ASME I: J. Fluids Engng. 105 (1983), 251–262.Google Scholar
  57. 7.
    Goldburg, U. and Reshotko, E.: Scaling and modeling of three-dimensional pressure-driven turbulent boundary layers, AIAA J. 22 (1984), 914–920.ADSCrossRefGoogle Scholar
  58. 8.
    Johnston, J. P.: On three-dimensional turbulent boundary layers generated by secondary flow, Trans. ASME D: J. Basic Engng. 82 (1960), 233–246.CrossRefGoogle Scholar
  59. 9.
    Nash, J. F. and Patel, V. C.: Three-dimensional turbulent boundary layers, Atlanta: SBC Technical Book (1972).Google Scholar
  60. 10.
    Degani, A. T.: The three-dimensional turbulent boundary layer — theory and application, Ph.D. Thesis, Lehigh University (1991).Google Scholar
  61. 11.
    Mellor, G. L.: The large Reynolds number asymptotic theory of turbulent boundary layers, Intl. J. Engng. Sci. 10 (1972), 851–873.CrossRefMathSciNetGoogle Scholar
  62. 12.
    Anderson, S. D. and Eaton, J. K.: Reynolds stress development in pressure-driven three-dimensional turbulent boundary layers, J. Fluid Mech. 202 (1989), 262–294.ADSGoogle Scholar
  63. 13.
    Wie, Y. S. and DeJarnette, F. R: Numerical investigation of three-dimensional separation using the boundary-layer equations” AIAA Paper 88–0617 (1988).Google Scholar
  64. 14.
    Walker, J. D. A., Ece, M. C and Werle, M. J.: An embedded function approach for turbulent flow prediction, AIAA J. 29 (1991) 1810–1818.ADSCrossRefMATHGoogle Scholar
  65. 15.
    Degani, A. T., Walker, J. D. A., Ersoy, E. and Power, G.: On the application of algebraic turbulence models to high Mach number flows, AIAA Paper 91–0616 (1991).Google Scholar
  66. 1.
    White, F. M.: Viscous Flow Theory, McGraw-Hill (1992).Google Scholar
  67. 2.
    He, J., Kazakia, J. Y. and Walker, J. D. A.: An asymptotic two-layer model for supersonic turbulent boundary layers, J. Fluid Mech. 295 (1995), 159–198.ADSCrossRefMATHGoogle Scholar
  68. 3.
    Cebeci, T. and Smith, A. M. O.: Analysis of Turbulent Boundary Layers, Academic Press (1974).MATHGoogle Scholar
  69. 4.
    Baldwin, B. S. and Lomax, H.: Thin layer approximation and algebraic model for turbulent separated flows, AIAA Paper 78–257 (1978).Google Scholar
  70. 5.
    Johnson, J. A. and King, L. S.: A mathematical simple closure model for attached and separated turbulent boundary layers, AIAA J. 23 (1985), 1684–1692.ADSCrossRefMathSciNetGoogle Scholar
  71. 6.
    Kline, S. J., Cantwell, B. J. and Lilley, G. M: The 1980–81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows: Comparison of Computation and Experiments, Vols. I — III, Thermo-Sciences Division, Stanford University (1981).Google Scholar
  72. 7.
    Van Driest, E. R.: Turbulent boundary layer in compressible fluids, J. Aero. Sci. 18 (1951), 145.161.CrossRefMATHGoogle Scholar
  73. 8.
    Crawford, M. E. and Kays, W. M.: Convective heat and mass transfer, 2nd Edition, McGraw-Hill (1980).Google Scholar
  74. 9.
    Maise, G. and McDonald, H.: Mixing length and kinematic eddy viscosity in a compressible boundary layer, AIAA J. 6 (1968), 73–80.ADSCrossRefGoogle Scholar
  75. 10.
    Degani, A. T., Walker, J. D. A., Ersoy, E. and Power, G.: On the application of algebraic turbulence models to high Mach number flows, AIAA Paper 91–0616 (1991).Google Scholar
  76. 11.
    Stewartson, K.: The theory of laminar boundary layers in compressible fluids, Oxford (1964).MATHGoogle Scholar
  77. 12.
    Weigand, G. G.: Forced convection in a two-dimensional nominally steady turbulent boundary layer (1978), Ph.D. Thesis, Purdue University.Google Scholar
  78. 13.
    Fernholz, H. H. and Finley, P. J.: A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers (1977), AGARD-AG-223.Google Scholar
  79. 14.
    Walker, J. D. A., Werte, M. J. and Ece, M. C: An embedded function approach for turbulent flow prediction, AIAA J. 29 (1987), 1810–1818.ADSGoogle Scholar
  80. 15.
    He, J., Kazakia, J. Y., Ruban, A. I. and Walker, J. D. A.: A model for adiabatic supersonic turbulent boundary layers, Theoretical and Computational Fluid Dynamics 8 (1996), 349–364.ADSMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • J. D. A. Walker
    • 1
  1. 1.Lehigh UniversityBethlehemUSA

Personalised recommendations