Turbulent Boundary Layers I

  • K. Gersten
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 390)


Quite often turbulent boundary layer theory is introduced by the statement, that turbulent boundary layers are governed by the same equations as the laminar boundary layers, except the kinematic viscosity v and thermal diffusivity a have to be replaced by the so—called effective kinematic viscosity v eff and effective thermal diffusivity a eff , respectively.


Boundary Layer Wall Shear Stress Turbulent Boundary Layer High Reynolds Number Wall Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, A. (1994): Messungen im Nachlauf von Körpern mit stumpfem Heck mittels der Laser-Doppler-Anemometrie. VDI-Fortschrittsberichte, Reihe 8: Meß-, Steuerungsund Regelungstechnik, No. 402, VDI-Verlag, Düsseldorf.Google Scholar
  2. Dilgen, P. (1995): Berechnung der abgelösten Strömung um Kraftfahrzeuge: Simulation des Nachlaufs mit einem inversen Panel-Verfahren. VDI-Fortschrittsberichte, Serie 7, Strömungstechnik, No. 258, Düsseldorf, VDI-Verlag.Google Scholar
  3. Gersten, K. (1995): What can asymptotic theory do for the turbulence modellers? Proceedings of Symposium on Developments in Fluid Dynamics and Aerospace Engineering, 9–10 Dec. 1993 (60th Birthday of Prof. R. Narasimha), Indian Institute of Science, Bangalore, pp 122–143.Google Scholar
  4. Gersten, K.; Becker, A.; Demmer, T. (1993): Experimental investigation of the wake past bluff bodies. In: K. Gersten (Ed.): Physics of Separated Flows -Numerical, Experimental, and Theoretical Aspects. Notes on Numerical Fluid Mechanics, Vol. 40, Vieweg-Verlag, Braunschweig, 233–240.CrossRefGoogle Scholar
  5. Gersten, K.; Herwig, H. (1992): Strömungsmechanik. Grundlagen der Impuls- Wärme- und Stoffübertragung aus asymptotischer Sicht. Vieweg-Verlag, Braunschweig, Wiesbaden.Google Scholar
  6. Gersten, K.; Klauer, J.; Vieth, D. (1993): Asymptotic analysis of two-dimensional turbulent separating flows. In: K. Gersten (Ed.): Physics of separated flows. Notes on Numerical Fluid Mechanics, Vol.40, Vieweg-Verlag, Braunschweig, Wiesbaden, pp. 125–132.Google Scholar
  7. Gersten, K.; Papenfuß, H.-D. (1992): Separated flows behind bluff bodies at low speeds including ground effects. In: H. Ramkissoon (Ed.): Proceedings 2nd Caribbean Conference of Fluid Dynamics, University of West Indies, St. Augustine, Trinidad, 115–122.Google Scholar
  8. Gersten, K.; Papenfuß, H.-D. (1993): Aerodynamischer Entwurf beim Automobil. RUBIN, Wissenschaftsmagazin der Ruhr-Universität Bochum, Vol.1, 36–41.Google Scholar
  9. Gersten, K.; Vieth, D.(1995): Berechnung anliegender Grenzschichten bei hohen Reynolds-Zahlen. Festschrift anläßlich des 70. Geburtstages von Prof. Dr. J. Siekmann, Universität-GH Essen.Google Scholar
  10. Jeken, B. (1992): Asymptotische Analyse ebener turbulenter Strömungen an gekrümmten Wänden bei hohen Reynolds-Zahlen mit einem Reynolds-Spannungs-Modell. VDI: Reihe 7, Nr.215, VDI-Verlag, Düsseldorf.Google Scholar
  11. Kaplun, S. (1957): Low Reynolds number flow past a circular cylinder. J. Math. Mech., Vol. 6, 595–603MATHMathSciNetGoogle Scholar
  12. Kaplun, S.; Lagerstrom, P.A. (1957): Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers. J. Math. Mech., Vol. 6, 585–593.MATHMathSciNetGoogle Scholar
  13. Kiel, R. (1995): Experimentelle Untersuchung einer Strömung mit beheiztem lokalen Ablösewirbel an einer geraden Wand. VDI-Fortschritt-Berichte, Reihe 7, Nr. 281, VDI-Verlag, Düsseldorf.Google Scholar
  14. Kline, S.J. (1982): Universal or zonal modelling — the road ahead. In: S.J. Kline, B.J. Cantwell, G.M. Lilley (Eds.): Proceedings of the 1980–81 AFOSR/HTTM Stanford Conference on Complex Turbulent Flows. Stanford University, Stanford, Cal. Vol. II: Comparison of Computation and Experiment, 991–1015.Google Scholar
  15. Messiter, A.F. (1970): Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math., Vol. 18, 241–257.CrossRefMATHGoogle Scholar
  16. Michel, R.; Quémard, C; Durant, R. (1968): Hypotheses on the mixing length and application to the calculation of the turbulent boundary layers. In: Kline, S.J. et al. (Eds.): Proceedings Computation of Turbulent Boundary Layers-1968. AFOSR-IFP-Stanford Conference, Vol. I, 195–207.Google Scholar
  17. Neiland, V.Y. (1969): Theory of laminar boundary layer separation in supersonic flow. Izv. Akad. Nauk SSSR Mekh. Zhid. i Gaza, Vol. 4, 53–57. Engl. Übersetzung: Fluid Dynamics, Vol. 4, 1969, 33–35.Google Scholar
  18. Papenfuß, H.-D. (1997): Theoretische Kraftfahrzeug-Aerodynamik — die Struktur des Strömungsfeldes bestimmt das Konzept. ATZ Automobiltechnische Zeitschrift, Bd. 99, 100–107.Google Scholar
  19. Papenfuß, H.-D.; Dilgen, P. (1993): Three-dimensional separated flow around automobiles with different read profiles: Application of the zonal method. In: K. Gersten (Ed.): Physics of Separated Flows -Numerical, Experimental, and Theoretical Aspects. Notes on Numerical Fluid Mechanics, Vol. 40, Vieweg-Verlag, Braunschweig, 241–248.CrossRefGoogle Scholar
  20. Prandtl, L. (1904): Über Füssigkeitsbewegung bei sehr kleiner Reibung, In: Krazer, A. (Hrsg.): Verh. III Intern. Math. Kongr., Heidelberg, 484–491, Teubner, Leipzig. 1905-Repr. Nendeln 1967.Google Scholar
  21. Schlichting, H.; Gersten, K. (1997): Grenzschicht-Theorie, 9th Edition, Springer-Verlag, Berlin, Heidelberg.CrossRefMATHGoogle Scholar
  22. Schneider, W. (1991): Boundary-layer theory of free turbulent shear flows. Z. f. Flugwiss. u. Weltraumforsch., Bd. 15, 143–158.ADSGoogle Scholar
  23. Stewartson, K. (1969): On the flow near the trailing edge of a flat plate. II. Mathematika, Vol. 16, 106–121.CrossRefMATHGoogle Scholar
  24. Stewartson, K. (1974): Multistructured boundary layers on flat plates and related bodies. Advances in Applied Mechanics, Vol. 14, 145–239.ADSCrossRefGoogle Scholar
  25. Stewartson, K.; Smith, F.T.; Kaups, K. (1982): Marginal separation. Studies in Appl. Math., Vol. 67, 45–61.MATHMathSciNetGoogle Scholar
  26. Stratford, B.S. (1959): An experimental flow with zero skin friction throughout its region of pressure rise. J. Fluid Mech., Vol.5, 17–35.ADSCrossRefMATHMathSciNetGoogle Scholar
  27. Van Dyke, M. (1975): Perturbation Methods in Fluid Mechanics. The Parabolic Press, Stanford, California.MATHGoogle Scholar
  28. Vieth, D. (1996): Heat and momentum transfer in turbulent boundary layers in the presence of strong adverse pressure gradients. In: K. Gersten (Ed.): Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers. Kluwer Academic Publishers, Dordrecht, 155–168.CrossRefGoogle Scholar
  29. Vieth, D. (1997): Berechnung der Impuls- und Wärmeübertragung in ebenen turbulenten Strömungen mit Ablösung bei hohen Reynolds-Zahlen. VDI-Fortschritt-Berichte, Reihe 7, Nr.311, VDI-Verlag, Düsseldorf.Google Scholar
  30. Vieth, D.; Kiel, R. (1995): Experimental and theoretical investigations of the near-wall region in a turbulent separated and reattached flow. Exp. Thermal and Fluid Sci., Vol.II, 243–254.Google Scholar
  31. Vieth, D.; Kiel, R.; Gersten, K. (1998): Two-dimensional turbulent boundary layers with separation and reattachment including heat transfer. In: M. Fiebig (Ed.): Monographien der Forschergruppe “Wirbel und Wärmeübertragung”. Notes on Numerical Fluid Mechanics, Vieweg-Verlag, Braunschweig, Wiesbaden.Google Scholar
  32. Van Wagenen, R.G. (1968): A study of axially-symmetric subsonic base flow. Ph.D. Thesis, Washington University.Google Scholar
  33. Young, A.D. (1989): Boundary Layers. BSP Professional Books, Oxford.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • K. Gersten
    • 1
  1. 1.Ruhr University of BochumBochumGermany

Personalised recommendations