Boundary-Layer Stability — Asymptotic Approaches

  • R. J. Bodonyi
Conference paper
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 390)


The stability of boundary-layer flows and their subsequent transition from a laminar state to a folly turbulent one has been the subject of intense study — theoretically, experimentally, and numerically — for many years. Indeed, hydrodynamic stability has generally been considered to be one of the central problems of fluid dynamics for over a century, and an explanation of boundary-layer stability and transition, in particular, has as yet to be described by a folly rational theory based on first principles, as noted by Reshotko [1], even though substantial progress has been made to this end during the past two decades.


Boundary Layer Transonic Flow Large Reynolds Number Neutral Stability Curve Freestream Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reshotko, E.: Boundary-Layer Stability and Transition, in Annu. Rev. Fluid Mech., 8 (1976), 311–349.ADSCrossRefGoogle Scholar
  2. 2.
    Mack, L.: Boundary-layer Linear Stability Theory in Special Course on Stability and Transition of Laminar Flows, AGARD Report No. 709, (1984), 3.1–3.81.Google Scholar
  3. 3.
    Tani, I.: Boundary-Layer Transition, in Annu. Rev. Fluid Mech., 1 (1969), 169–196.ADSCrossRefGoogle Scholar
  4. 4.
    Kozlov, V.V. (ed.): Laminar-Turbulent Transition, Springer-Verlag, Berlin 1985.Google Scholar
  5. 5.
    Kachanov, Y. S. : Physical Mechanisms of Laminar-Boundary-Layer Transition, in Annu. Rev. Fluid Mech., 26 (1994), 411–482.ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Reed, H.L., Saric, W.S. and Arnal, D. : Linear Stability Theory Applied to Boundary Layers, in Annu. Rev. Fluid Mech., 28 (1996), 389–428.ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cowley, S.J. and Wu, X.: Asymptotic Approaches to Transition Modelling, in: AGARD-R-793 (Special course in progress in transition modelling), Von Kármán Inst. Rhode-Saint-Genése, Belg. (1993), 3.1–3.38.Google Scholar
  8. 8.
    Herbert, T.: Parabolized Stability Equations, in: AGARD-R-793 (Special course in progress in transition modelling), Von Kármán Inst. Rhode-Saint-Genése, Belg. (1993), 4.1–4.34.Google Scholar
  9. 9.
    Smith, F.T., Papageorgiou, D. and Elliott, J.W.: An alternate approach to linear and nonlinear stability calculations at finite Reynolds number, J. Fluid Mech., 146 (1984), 313–330.ADSCrossRefMATHGoogle Scholar
  10. 10.
    Van Dyke, M.: Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford 1975.MATHGoogle Scholar
  11. 11.
    Smith, F.T.: On the nonparallel flow stability of the Blasius boundary layer, Proc. Roy. Soc. Lond., A366 (1979), 91–109.ADSCrossRefMATHGoogle Scholar
  12. 12.
    Smith, F.T.: Nonlinear stability of boundary layers for disturbances of various sizes, Proc. Roy. Soc. Lond., A368 (1979), 573–589. (And corrections A371 (1980), 439).ADSCrossRefMATHGoogle Scholar
  13. 13.
    Stewartson, K.: On the flow near the trailing edge of a flat plate II, Mathematika, 16 (1969), 106–121.CrossRefMATHGoogle Scholar
  14. 14.
    Messiter, A.F.: Boundary-layer flow near the trailing edge of a flat plate, SIAM J. Appl. Math., 18 (1970), 241–257.CrossRefMATHGoogle Scholar
  15. 15.
    Bodonyi, R.J. and Smith, F.T.: The upper branch stability of the Blasius boundary layer, including nonparallel flow effects, Proc. Roy. Soc. Lond. A, 375 (1981), 65–92.ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Smith, F.T. and Bodonyi, R.J.: Nonlinear critical layers and their development in streaming-flow stability, J. Fluid Mech., 118 (1982), 165–185.ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Bodonyi, R.J., Smith, F.T. and Gajjar, J.: Amplitude-dependent stability of boundary-layer flow with a strongly nonlinear critical layer, IMA J. Appl. Math., 30 (1983), 1–19.ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Lin, C.C.: The Theory of Hydrodynamic Stability, Cambridge University Press, Cambridge 1955.MATHGoogle Scholar
  19. 19.
    Bogdanova, E.V. and Ryzhov, O.S.: Free and induced oscillations in Poiseuille flow, Q. J. Mech. Appl Math., 36 (1983), 271–287.CrossRefGoogle Scholar
  20. 20.
    Terent’ev, E.D.: On the nonstationary boundary layer with self-induced pressure near a vibrating wall in a supersonic flow, Sov. Phys. Dokl., 23 (1978), 358.ADSMATHGoogle Scholar
  21. 21.
    Smith, F.T. and Burggraf, O.R.: On the development of large-sized short-scaled disturbances in boundary layers, Proc. R. Soc. Lond., A399 (1985), 22–55.ADSGoogle Scholar
  22. 22.
    Smith, F.T.: Two-dimensional disturbance travel, growth, and spreading in boundary Layers, J. Fluid Mech., 169 (1986), 353–377.ADSCrossRefMATHGoogle Scholar
  23. 23.
    Ryzhov, O.S. and Zhuk, V.I.: in Current Problems in Computational Fluid Dynamics. Moscow : MIR Publications, (1986), 286.Google Scholar
  24. 24.
    Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandl. d. III. Intern. Mathem. Kongresses, Heidelberg, (1904), 484–491.Google Scholar
  25. 25.
    Stewartson, K. and Williams, P.G.: Self-induced separation, Proc. R. Soc. Lond., A312 (1969), 181–206.ADSCrossRefMATHGoogle Scholar
  26. 26.
    Stewartson, K.: Multistructured Boundary Layers on Flat Plates and Related Bodies, Advances in Applied Meck, 14 (1974), 145–239.CrossRefGoogle Scholar
  27. 27.
    Bodonyi, R.J. and Kluwick, A.: Freely interacting transonic boundary layers, Phys. Fluids, 20 (1977), 1432–1437.ADSCrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Ryzhov, O.S.: An Asymptotic Approach to Separation and Stability Problems of a Transonic Boundary Layer, in Transonic aerodynamics. Problems in Asymptotic Theory. (Ed. L.P. Cook), SIAM 1993, 29–53.CrossRefGoogle Scholar
  29. 29.
    Bouthier, M.: Stabilité linéaire des écoulements presque paralléles. La couche limite de Blasius, J. de Mécanique, 12 (1973), 75–95.Google Scholar
  30. 30.
    Ross, J.A., Barnes, F.H., Burns, J.G. and Ross, M.A.S.: The flat plate boundary layer. Part 3. Comparison of theory with experiment, J. Fluid Mech., 43 (1970), 819–832.ADSCrossRefMATHGoogle Scholar
  31. 31.
    Gaster, M.: On the effects of boundary-layer growth on flow stability, J. Fluid Mech., 66 (1974), 465–480.ADSCrossRefMATHGoogle Scholar
  32. 32.
    Smith, F.T.: On the first-mode instability in subsonic, supersonic or hypersonic boundary layers, J. Fluid Mech., 198 (1989), 127–153.ADSCrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Gajjar, J.S.B. and Cole, J.W.: The upper branch stability of compressible boundary layer flows, Theo. Comput. Fluid Dyn., 1 (1989), 105.MATHGoogle Scholar
  34. 34.
    Bowles, R.I.: Application of nonlinear viscous-inviscid interactions in liquid layer flows and transonic boundary layers transition. Ph.D. Thesis, University of London, (1990).Google Scholar
  35. 35.
    Reid, W.H.: The Stability of Parallel Flows., in Basic Developments in Fluid Dynamics, (ed. M. Holt), 1 (1965), 249–307.Google Scholar
  36. 36.
    Stewart, P.A. and Smith, F.T.: Three-dimensional instabilities in steady and unsteady nonparallel boundary layers, including effects of Tollmien-Schlichting disturbances and cross flow, Proc. Roy. Soc. Lond. A, 409 (1987), 229–248.ADSCrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Hall, P. and Smith, F.T.: On the effects of nonparallelism, three-dimensionality, and mode interaction in nonlinear boundary-layer stability, Stud. Appl. Math., 70 (1984), 91–120.ADSMATHMathSciNetGoogle Scholar
  38. 38.
    Itoh, N.: Spatial growth of finite wave disturbances in parallel and nearly parallel flows. Part 2. The numerical results for the flat plate boundary layer, Trans. Japan Soc. Aero Space Sci., 17 (1974), 175–186.Google Scholar
  39. 39.
    Smith, F.T. and Walton, A.G.: Nonlinear interaction of near-planar TS waves and longitudinal vortices in boundary-layer transition, Mathematika, 36 (1989), 262–289.CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Goldstein, M.E.: Nonlinear interactions between oblique instability waves on nearly parallel shear flows, Phys. Fluids, 6 (1994), 724–735.ADSCrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Goldstein, M.E.: The role of nonlinear critical layers in boundary layer transition, Phil Trans. R. Soc. Lond. A, 352 (1995), 425–442.ADSCrossRefMATHGoogle Scholar
  42. 42.
    Conlisk, A.T., Burggraf, O.R. and Smith, F.T.: Nonlinear neutral modes in the Blasius boundary layer, Forum on Unsteady Flow Separation, 32 (1987), 119–121.ADSGoogle Scholar
  43. 43.
    Zhuk, V.I. and Ryzhov, O.S.: Locally inviscid perturbations in a boundary layer with self-induced pressure, Dokl. Akad. Nauk SSSR, 263 (1982), 56–69 (in Russian). See also Sov. Phys. Dokl., 27 (1982), 177–179 (in English).MathSciNetGoogle Scholar
  44. 44.
    Kachanov, Y.S., Ryzhov, O.S. and Smith, F.T.: Formation of solitons in transitional boundary layers: theory and experiment, J. Fluid Meck., 251 (1993), 273–297.ADSCrossRefMathSciNetGoogle Scholar
  45. 45.
    Van Dommelen, L.L. and Shen, S.F.: The genesis of separation, in: Numerical and Physical Aspects of Aerodynamic Flows (ed. T. Cebeci), Springer, New York 1981, 293–311.Google Scholar
  46. 46.
    Elliott, J.W., Cowley, S.J. and Smith, F.T.: Breakdown of boundary layers: (i) on moving surfaces; (ii) in semi-similar unsteady flow; (iii) in fully unsteady flow, Geophys. Astrophys. Fluid Dyn., 25 (1983), 77–138.ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    Peridier, V.J., Smith, F.T. and Walker, J.D.A.: Vortex induced boundary-layer separation. Part 1. The unsteady limit problem Re → ∞. Part 2. Unsteady interacting boundary-layer theory, J. Fluid Meck., 232 (1991), 99–131, 133–165.ADSCrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Hoyle, J.M., Smith, F.T. and Walker, J.D.A.: On sublayer eruption and vortex formation, Comp. Phys. Comm., 65 (1991), 151–157.ADSCrossRefMATHGoogle Scholar
  49. 49.
    Smith, F.T.: On spikes and spots: strongly nonlinear theory and experimental comparisons, Phil Trans. R. Soc. Lond. A, 352 (1995), 405–424.ADSCrossRefMATHGoogle Scholar
  50. 50.
    Stewart, P.A. and Smith, F.T.: Three-dimensional nonlinear blow-up from a nearly planar initial disturbance, in boundary-layer transition: theory and experimental comparisons, J. Fluid Meck, 244 (1992), 79–100.ADSCrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Hall, P. and Smith, F.T.: On strongly nonlinear vortex-wave interactions in boundary-layer transition, J. Fluid Meck, 227 (1991), 641–666.ADSCrossRefMATHGoogle Scholar
  52. 52.
    Davis, D.A.R. and Smith, F.T.: Influence of cross-flow on nonlinear Tollmien-Schlichting/vortex interaction, Proc. R. Soc. Lond. A, 446 (1994), 319–340.ADSCrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Smith, F.T.: Nonlinear transition paths in boundary layers with cross-flow, in IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers (P.W. Duck and P. Hall eds.) (1996), 283–297.CrossRefGoogle Scholar
  54. 54.
    Davis, D.A.R. and Smith, F.T.: Cross-flow influence on nonlinear Tollmien-Schlichting/vortex interaction, in IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary layers (P.W. Duck and P. Hall, eds.) (1996), 309–316.CrossRefGoogle Scholar
  55. 55.
    Bowles, R.I.: Application of nonlinear viscous-inviscid interactions in liquid layer flows and transonic boundary layers transition. Ph.D. Thesis, University of London, (1990).Google Scholar
  56. 56.
    Brown S.N., Khorrami, A.F., Neish, A. and Smith, F.T.: Hypersonic boundary-layer interactions and transition, Trans. Roy. Soc., A 335 (1991), 139–152.ADSCrossRefMATHGoogle Scholar
  57. 57.
    Davis, D.A.R. and Smith, F.T.: On subsonic, supersonic and hypersonic inflectional-wave/vortex interaction, J. Engr. Maths., 30 (1996), 611–645.CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Benney, D.J. and Bergeron, R.F.: A new class of nonlinear waves in parallel flows, Stud. Appl. Math., 48 (1969), 181–204.MATHGoogle Scholar
  59. 59.
    Davis, R.E.: On the high Reynolds number flow over a wavy wall, J. Fluid Mech., 30 (1969), 337–346.ADSCrossRefGoogle Scholar
  60. 60.
    Haberman, R.: Critical layers in parallel flows, Stud. Appl. Math., 51 (1972), 139–161.MATHGoogle Scholar
  61. 61.
    Brown, S.N. and Stewartson, K.: The evolution of the critical layer of a Rossby wave. Part II, Geophys. Astrophys. Fluid Dyn. ,10(1978), 1–24.ADSCrossRefMATHGoogle Scholar
  62. 62.
    Smith, F.T., Doorly, D.J. and Rothmayer, A.P.: On displacement-thickness, wall-layer, and mid-flow scales in turbulent boundary layers, and slugs of vorticity in channel and pipe flows, Proc. R. Soc. Lond. A, 428 (1990), 255–281.ADSCrossRefMATHGoogle Scholar
  63. 63.
    Gajjar, J. and Smith, F.T.: On the global instability of free disturbances with a time-dependent nonlinear viscous critical layer, J. Fluid Mech., 157 (1985), 53–77.ADSCrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    Goldstein, M.E. and Durbin, P.A.: Nonlinear critical layers eliminate the upper branch of spatially growing Tollmien-Schlichting waves, Phys. Fluids, 29 (1986), 2344–2345.ADSCrossRefGoogle Scholar
  65. 65.
    Bayliss, A., Maestrello, L., Parrikh, P. and Turkei, E.: AIAA Paper 85–0565.Google Scholar
  66. 66.
    Wu, X., Lieb, S.J. and Goldstein, M.E.: On the nonlinear evolution of a pair of oblique Tollmien-Schlichting waves in boundary layers, J. Fluid Mech., 340 (1997), 361–394.ADSCrossRefMATHMathSciNetGoogle Scholar
  67. 67.
    Brown, S.N. and Smith, F.T.: On vortex/wave interactions. Part 1. Non-symmetrical input and cross-flow in boundary layers, J. Fluid Mech., 307 (1996), 101–133.ADSCrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Smith, F.T., Brown, S.N. and Brown, P.G.: Initiation of three-dimensional nonlinear transition paths from an inflectional profile, Eur. J. Mech., B12 (1993), 447–473.MATHMathSciNetGoogle Scholar
  69. 69.
    Allen T., Brown, S.N. and Smith, F.T.: On vortex/wave interactions. Part 2. Originating from axisymmetric flow with swirl, J. Fluid Mech., 325 (1996), 145–161.ADSCrossRefMATHGoogle Scholar
  70. 70.
    Timoshin, S.N. and Smith, F.T.: Singular modes in Rayleigh instability of the three-dimensional streamwise-vortex flow, J. Fluid Mech., 333 (1997), 139–160.ADSCrossRefMATHMathSciNetGoogle Scholar
  71. 71.
    Morkovin, M.V.: Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies, Rep. AFFDL-TR-68–149 (1969), Air Force Flight Dyn. Lab, Wright-Paterson AFB, Ohio.Google Scholar
  72. 72.
    Murdock, J.W.: The generation of a Tollmien-Schlichting wave by a sound wave, Proc. R. Soc. Lond A, 372 (1980), 517–534.ADSCrossRefGoogle Scholar
  73. 73.
    Goldstein, M.E.: The evolution of Tollmien-Schlichting waves near a leading edge, J. Fluid Mech., 127 (1983), 59–81.ADSCrossRefMATHMathSciNetGoogle Scholar
  74. 74.
    Goldstein, M.E.: Generation of instability waves in flows separating from smooth surfaces, J. Fluid Mech., 145 (1984), 71–94.ADSCrossRefMATHGoogle Scholar
  75. 75.
    Goldstein, M.E.: Scattering of acoustic waves in Tollmien-Schlichting waves by small streamwise variations in surface geometry, J. Fluid Mech., 154 (1985), 509–529.ADSCrossRefMATHGoogle Scholar
  76. 76.
    Goldstein, M.E., Leib, S.J. and Cowley, S.J.: Generation of Tollmien-Schlichting waves on interactive marginally separated flows, J. Fluid Mech., 181 (1987), 585–517.Google Scholar
  77. 77.
    Ruban, A.I.: On Tollmien-Schlichting wave generation by sound, Izv. Akad. Nauk SSSR. Mz AG, 5 (1984),44.Google Scholar
  78. 78.
    Bodonyi, R.J., Welch, W.J.C., Duck, P.W. and Tadjfar, M.: A numerical study of the interaction between unsteady freestream disturbances and localized variations in surface geometry, J. Fluid Mech., 209 (1989), 285–308.ADSCrossRefMATHGoogle Scholar
  79. 79.
    Tadjfar, M. and Bodonyi, R.J.: Receptivity of a laminar boundary layer to the interaction of a three-dimensional roughness element with time-harmonic freestream disturbances, J. Fluid Mech., 242 (1992), 701–720.ADSCrossRefMATHGoogle Scholar
  80. 80.
    Duck, P.W., Ruban, A.I. and Zhikharev, C.N.: The generation of Tollmien-Schlichting waves by freestream turbulence, J. Fluid Mech., 312 (1996), 341–371.ADSCrossRefMATHMathSciNetGoogle Scholar
  81. 81.
    Kozlov, V.V. and Ryzhov, O.S.: Receptivity of boundary layers: asymptotic theory and experiment, Proc. R. Soc. Lond. A, 429 (1990), 341–373.ADSCrossRefMathSciNetGoogle Scholar
  82. 82.
    Goldstein, M.E. and Hultgren, L.S.: Boundary layer receptivity to long-wave freestream disturbances, Ann. Rev. Fluid Mech., 21 (1989), 137–166.ADSCrossRefMathSciNetGoogle Scholar
  83. 83.
    Seddougui, S.O. and Bassom, A.P.: Instability of hypersonic flow over a cone, J. Fluid Mech., 345 (1997), 383–411.ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • R. J. Bodonyi
    • 1
  1. 1.The Ohio State UniversityColumbusUSA

Personalised recommendations