Laminar Boundary Layers

Asymptotic and Scaling Considerations
  • H. Herwig
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 390)


Laminar boundary layer theory is introduced with special emphasis on its underlying physics. The aim of this article is to reveal the asymptotic character of wall bounded flows as well as details of the asymptotic theory that can describe these flows for increasing Reynolds numbers in a unique and systematic way.

Scale analysis is a powerful tool in developing an adequate mathematical / physical model to describe high Reynolds number flows and is intimately related to an asymptotic description of these flows. It will be demonstrated that all necessary transformations in boundary layer theory can be deduced by scale analysis arguments, even in situations with a complicated multilayered structure of the flow and temperature field.

The following content will be covered with this asymptotic and scaling approach:
  1. 1.


  2. 2.

    The physics of laminar boundary layers

  3. 3.

    Mathematical description

  4. 4.

    Viscous/inviscid interaction theory

  5. 5.

    Thermal boundary layers

  6. 6.

    Variable property effects



Boundary Layer Thermal Boundary Layer Perturbation Parameter Laminar Boundary Layer Boundary Layer Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prandtl L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung, in: Verh. III Intern. Math. Kongr. (Ed. A. Krazer), Teubner, Leipzig 1904, 484–491.Google Scholar
  2. 2.
    Van Dyke, M. : Pertubation Methods in Fluid Mechanics, The Parabolic Press, Stanford 1975.Google Scholar
  3. 3.
    Schneider, W.: Mathematische Methoden in der Strömungsmechanik, Vieweg-Verlag, Braunschweig 1978.CrossRefGoogle Scholar
  4. 4.
    Schlichting, H. and Gersten, K.: Grenzschichttheorie, Springer Verlag, Heidelberg 1996.Google Scholar
  5. 5.
    Gersten, K. and Herwig, H.: Strömungsmechanik, Vieweg-Verlag, Wiesbaden 1992.CrossRefGoogle Scholar
  6. 6.
    Spurk, J. H.: Fluid Mechanics, Springer-Verlag, Berlin 1997.CrossRefMATHGoogle Scholar
  7. 7.
    Stewartson, K. : On the flow near the trailing edge of a flat plate, II. Mathematica, Vol. 16, 106–121, 1969.MATHGoogle Scholar
  8. 8.
    Stewartson, K.: Multistructured boundary layers on flat plates and related bodies. Advances in Appl. Mech., Vol. 14, 145–239, 1974.CrossRefGoogle Scholar
  9. 9.
    Gersten, K. and Herwig, H.: Impuls- und Wärmeübertragung bei variablen Stoffwerten für die laminare Plattenströmung, Wärme- Stoffübertragung, Bd. 16, 25–35, 1984.ADSCrossRefGoogle Scholar
  10. 10.
    Herwig, H. and Wickern, G.: The effect of variable properties on laminar boundary layer flow, Warme- und Stoffubertragung, Bd. 20, 47–57, 1986.ADSCrossRefGoogle Scholar
  11. 11.
    Herwig, H., Wickern, G. and Gersten, K.: Der EinfluB variabler Stoffwerte auf naturliche laminare Konvektionsstromungen, Warme- und Stoffubertragung, Bd. 19, 19–30, 1985.ADSCrossRefGoogle Scholar
  12. 12.
    Herwig, H. and Schafer, P.: A combined perturbation / Finite-difference procedure applied to temperature effects and stability in a laminar boundary layer, Archive of Applied Mechanics, Vol. 66, 264–272, 1996.ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • H. Herwig
    • 1
  1. 1.Technical University of ChemnitzChemnitzGermany

Personalised recommendations