The Fracture Mechanics Concepts of Creep and Creep/Fatigue Crack Growth

  • K. M. Nikbin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 389)


This Chapter covers topics related to the creep and fracture of engineering materials at high temperatures containing defects and their relation to high temperature life assessment methods. Following a description of engineering creep parameters basic elasto-plastic fracture mechanics.methods are presented and high temperature fracture mechanics parameters are derived from pasticity concepts. Techniques are shown for determining the creep fracture mechanics parameter C* using experimental crack growth data, collapse loads and reference stress. Models for predicting creep crack initiation and growth in terms of C* and the creep uniaxial ductility are developed. These ideas are then applied to practical techniques for analysing and predicting crack initiation and growth under static and cyclic loading conditions. The subject cannot covered in detail within one chapter but rather an overview is presented in order to highlight the relevant topics that the reader should seek further reading on.


Stress Intensity Factor Crack Growth Rate Energy Release Rate Creep Crack Growth Tertiary Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Webster, G. A., And Ainsworth, R. A., “high temperature component life assessment”, Chapman Hall, 1994.Google Scholar
  2. 2.
    Webster, G.A., ‘A widely applicable dislocation model for creep’, Phil. Mag., 14, 1966, 775–783.CrossRefGoogle Scholar
  3. 3.
    Dorn, J.E., Ed, ‘Mechanical behaviour of materials at elevated temperatures’, McGraw-Hill, Inc., New York, 1961.Google Scholar
  4. 4.
    Kennedy, A.J., ‘Processes of creep and fatigue in metals’, Wiley, New York, 1962.Google Scholar
  5. 5.
    Garofalo, F., ‘Fundamentals of creep and creep-rupture in metals’, MacMillan, New York, 1965.Google Scholar
  6. 6.
    Mclintock, F.A. and Argon, A.S., ‘Mechanical behaviour of materials’, Addison-Wesley, Massachusetts, 1966.Google Scholar
  7. 7.
    Gemmill, M.G., The technology and properties of ferrous alloys for high temperature use’, Newnes, London 1966Google Scholar
  8. 8.
    Gittus, J., ‘Creep, viscoelasticity and creep fracture in solids’, Applied Science, London, 1975.Google Scholar
  9. 9.
    Frost, H.J., and Ashby, M.F., ‘Deformation-mechanism maps’, Pergamon Press, Oxford, 1982.Google Scholar
  10. 10.
    Riedel, H., ‘Fracture at high temperatures’, Springer-Verlag, Berlin, 1987.Google Scholar
  11. 11.
    Cadek, J,’Creep in Metallic Materials’, Elsevier, Amsterdam, 1988.Google Scholar
  12. 12.
    Johnson, W.G. and Gilman, J.J., ‘Dislocation velocities, dislocation densities and plastic flow in lithium fluoride crystals’, J. App Phys, 30, no. 2, 1959, 129–144.CrossRefGoogle Scholar
  13. 13.
    Haasen, P., ‘III Dislocation mobility and generation, dislocation motion and plastic yield of crystals’, Discussions of the Faraday Soc, no. 38, 1964, 191–200.CrossRefGoogle Scholar
  14. 14.
    Webster, G.A., Cox, A.P.D. and Dorn, J.E., ‘A relationship between transient and steady-state creep at elevated temperatures’, Met Sci J, 3, 1969, 221–225.CrossRefGoogle Scholar
  15. 15.
    Evans, R.W. and Wilshire, B., ‘Creep of metals and alloys’, Inst. of Metals, London, 1985.Google Scholar
  16. 16.
    Ashby, M.F., Gandhi, C. and Taplin, D.M.R., ‘Fracture-mechanism maps and their construction for FCC metals and alloys’, Acta Met, 27, 1979, 699–729.CrossRefGoogle Scholar
  17. 17.
    Gandhi, C and Ashby, M.F., ‘Fracture-mechanism maps for materials which cleave: FCC, BCC and HCP metals and ceramics’, ib id, 1565–1602.Google Scholar
  18. 18.
    Gittus, J., ‘Cavities and cracks in creep and fracture’, Applied Science, London, 1981.Google Scholar
  19. 19.
    Monkman, F.C. and Grant, N.J., ‘An empirical relationship between rupture life and minimum creep rate in creep-rupture tests’, Proc Am Soc Testing Materials, 56, 1956, 593–620.Google Scholar
  20. 20.
    Finnie, I. and Heller, W.R., ‘Creep of engineering materials’, McGraw-Hill, New York, 1959.Google Scholar
  21. 21.
    Lubahn, J.D. and Felgar, R.P., ‘Plasticity and creep of metals’, Wiley, New York, 1961.Google Scholar
  22. 22.
    Johnson, A.E., Henderson, J. and Khan, B., ‘Complex stress creep, relaxation and fracture of metallic alloys’, HMSO, London, 1962Google Scholar
  23. 23.
    Odqvist, F.K.G., ‘Mathematical theory of creep and creep rupture’, Oxford University Press, Oxford, 1966.Google Scholar
  24. 24.
    Rabotnov, Yu N., ‘Creep problems in structural members’, (Ed. F.A. Leckie ), North Holland, Amsterdam, 1969.Google Scholar
  25. 25.
    Penny, R.K. and Marriott, D.C., ‘Design for creep’, McGraw-Hill, London, 1971.Google Scholar
  26. 26.
    Boyle, J.T. and Spence, J., ‘Stress analysis for creep’, Butterworths, London, 1983.Google Scholar
  27. 27.
    Viswanathan, R., ‘Damage mechanisms and life assessment of high-temperature components’, ASM International, Metals Park, Ohio, 1989.Google Scholar
  28. 28.
    Cocks, A.C.F. and Ashby, M.F., ‘Intergranular fracture during power-law creep under multiaxial stress’, Met. Sci., 14, 1980, 395–402.CrossRefGoogle Scholar
  29. 29.
    Smith, D.J. and Webster, G.A., ‘Fracture mechanics interpretations of multiple-creep cracking using damage-mechanics concepts’, Mat. Sci and Tech., 1, 1985, 366–372.CrossRefGoogle Scholar
  30. 30.
    Kachanov, L.M., ‘Introduction to continuum damage mechanics’, Kluwer Academic Publishers, Dordrecht, 1986.CrossRefGoogle Scholar
  31. 31.
    Rice, J.R. and Tracey, D.M., ‘On the ductile enlargement of voids in triaxial stress fields’, J. Mech. Phys. Solids, 17, 1969, 201–217.CrossRefGoogle Scholar
  32. 32.
    Forrest, P.J., ‘Fatigue of metals’, Addison-Wesley, Reading, USA, 1962.Google Scholar
  33. 33.
    Forsyth, P.J.E., ‘The physical basis of metal fatigue’, Elsevier, New York, 1969.Google Scholar
  34. 34.
    Fuchs, H.O. and Stephens, R.I., ‘Metal fatigue in engineering’, J. Wiley, New York, 1980.Google Scholar
  35. 35.
    Hertzberg, R.W., ‘Deformation and fracture mechanics of engineering materials’, J. Wiley, New York, 1983.Google Scholar
  36. 36.
    Bressers, J. (Ed), ‘Creep and fatigue in high temperature alloys’, Applied Science, Barking, UK, 1981.Google Scholar
  37. 37.
    Coffin, L.F., ‘Fatigue at high temperature’ in ‘Fatigue at elevated temperatures’, ASTM STP 520, 1973, 5–34.Google Scholar
  38. 38.
    Manson, S.S., ‘A challenge to unify treatment of high temperature fatigue–a partisan proposal based on strainrange partitioning in fatigue at elevated temperatures, in Fatigue at elevated temperatures’, ASTM STP 520, 1973, 744–775.Google Scholar
  39. 39.
    Irwin, Fracture dynamics, in Fracturing of metals, 1948, ASM: p. 147–166.Google Scholar
  40. 40.
    Rice, J. R. and Rosengren, G. F., Plane strain deformation near a crack tip in a power-law hardening material. Journal of Mechanics and Physics of Solids, 1968. 16: P. 1.CrossRefGoogle Scholar
  41. 41.
    Rice, J. R., A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, 1968. E35 (ASME): p. 379–386.CrossRefGoogle Scholar
  42. 42.
    Williams, M. L., On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 1957. 24: p. 109–114.Google Scholar
  43. 43.
    Sih, G. C., Handbook of Stress Intensity Factors. 1973, Bethlehem, Penn: Institute of Fracture and Solid Mechanics, Lehigh University.Google Scholar
  44. 44.
    Rooke, D. P. and Cartwright, D. J., Compendium of Stress Intensity Factors. 1976, London: Her Majesty’s Stationary Office.Google Scholar
  45. 45.
    Tada, H., Paris, P. C., and Irwin, G. R., The Stress Analysis of Cracks Handbook. Second Edition ed. 1985, Hellertown, Pa.: Del Research.Google Scholar
  46. 46.
    Hutchinson, J. W., Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanical and Physics of Solids, 1968. 16: p. 13–31.CrossRefGoogle Scholar
  47. 47.
    Griffith, A. A., The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of Royal Society of London, 1920. A-221(163–198).Google Scholar
  48. 48.
    McClintock, F. A., Mechanics in Alloy Design, in Fundamental Aspects of Structural Alloy Design, R. I. Jaffee and B. A. Wilcox ed. 1977, Plenum Press: New York.Google Scholar
  49. 49.
    Parks, D. M., The Virtual Crack Extension Method for Non-linear Material Behaviour. Computer Methods in Applied Mechanics and Engineering, 1977. 12: p. 353–364.CrossRefGoogle Scholar
  50. 50.
    Hellen, T. K., International Journal of Numerical Mathematics and Engineering, 1975. 9: p. 187.CrossRefGoogle Scholar
  51. 51.
    He, M. Y. and Hutchinson, J. W., The penny-shaped crack and the plane strain crack in an infinite body of power-law material. Journal of Applied Mechanics, 1981. 48: p. 830–840.CrossRefGoogle Scholar
  52. 52.
    Kumar, V., German, M. D., and Shih, C. F., An Engineering Approach for Elastic-Plastic Fracture Analysis, NP-1931, 1981,Electric Power Research InstituteGoogle Scholar
  53. 53.
    Kumar, V. and Shih, C. F., Fully Plastic Crack Solutions, Estimation Scheme, and Stability Analyses for the Compact Specimen. ASTM STP, 1980. 700 (American Society for Testing and Materials): p. 406–438.Google Scholar
  54. 54.
    Kumar, V., et al., Estimation Technique for the Prediction of Elastic-Plastic Fracture of Structural Components of Nuclear Systems, RP-1237–1, 1982,GE/EPRIGoogle Scholar
  55. 55.
    Kumar, V. and German, M. D., Elastic-Plastic Fracture Analysis of Through-Wall and Surface Flaws in Cylinders, NP-5596, 1988,GE/EPRIGoogle Scholar
  56. 56.
    Shih, C. F. and Needleman, A., Fully Plastic Crack Problems. Journal of Applied Mechanics, 1984. 51: p. 48–56.CrossRefGoogle Scholar
  57. 57.
    Shih, C. F. and Needleman, A., Fully Plastic Crack Problems -Part 2: Application of Consistency Checks-. Journal of Applied Mechanics, Transaction of ASME, 1984. 51: p. 57–64.CrossRefGoogle Scholar
  58. 58.
    Kumar, V., et al., Advances in Elastic-Plastic Fracture Analysis, NP-3607, 1984,GE/EPRIGoogle Scholar
  59. 59.
    Yagawa, G., Takahashi, Y., and Ueda, H., Three-dimensional fully plastic solutions for plates and cylinders with through-wall cracks. Journal of Applied Mechanics, 1985. 52: p. 319–325.CrossRefGoogle Scholar
  60. 60.
    Ainsworth, R. A. and Goodall, I. W., Defect Assessment at Elevated Temperature. Journal of Pressure Vessel Technology, 1983. 105: p. 263–268.CrossRefGoogle Scholar
  61. 61.
    Ainsworth, R. A., Some Observations on Creep Crack Growth. International Journal of Fracture, 1982. 18: p. 147–159.CrossRefGoogle Scholar
  62. 62.
    Ainsworth, R. A., The Assessment of Defects in Structures of Strain Hardening Material. Engineering Fracture Mechanics, 1984. 19 (4): p. 633–642.CrossRefGoogle Scholar
  63. 63.
    Goodall, I. W., et al., Development of High Temperature Design Methods based on Reference Stress. Journal of Engineering Materials and Technology, 1979. 101: p. 349–355.CrossRefGoogle Scholar
  64. 64.
    Miller, A. G., Review of Limit Loads of Structures Containing Defects. International Journal of Pressure Vessel and Piping, 1988. 32: p. 197–327.CrossRefGoogle Scholar
  65. 65.
    ASTM, Standard Test for JIC, a Measure of Fracture Toughness, ASTM E813, 1987.Google Scholar
  66. 66.
    Nikbin, K. M., Webster, G. A., and Turner, C. E. A Comparison of Methods of Correlating Creep Crack Growth. in ICF4. 1977. Waterloo, Canada:Google Scholar
  67. 67.
    Rice, J. R., Paris, P. C., and Merkle, J. G., Some Further Results of J-integral and Analysis Estimates, in Progress in Flaw Growth and Fracture Toughness Testing, STP 536, 1973, ASTM: p. 231.Google Scholar
  68. 68.
    Smith, D. J. and Webster, G. A., Estimates of the C* parameter for crack growth in creeping materials. ASME STP, 1983. 803: p. I-654-I-674.Google Scholar
  69. 69.
    Riedel, H. and Rice, J. R., Tensile Cracks in Creeping Solids, in Fracture Mechanics, P. C. Paris ed. STP 700, 1980, ASTM: p. 112–130.Google Scholar
  70. 70.
    Riedel, H., Fracture at High Temperature. 1st ed. Material Research and Engineering, eds. B. Ilschner and N. J. Grant. 1986, Berlin: Springer-Verlag Berlin. 418.Google Scholar
  71. 71.
    Ehlers, R. and Riedel, H. in Advances in Fracture Research, Proceeding of ICF5. 1981. Pergamon Press.Google Scholar
  72. 72.
    Ainsworth, R. A. and Budden, P. J., Crack tip fields under non-steady creep conditions–I. Estimates of the amplitudes of the fields. Fatigue and Fracture of Engineering Materials and Structures, 1990. 13: p. 263–276.CrossRefGoogle Scholar
  73. 73.
    Saxena, A. Crack Growth under Non Steady-state Conditions. in 17th ASTM National Symposium on Fracture Mechanics. 1984. Albany, NYGoogle Scholar
  74. 74.
    Bassani, J. L., Donald, D. E., and Saxena, A., Evaluation of the Ct Parameter for Characterizing Creep Crack Growth Rate in the Transient Regime. ASTM STP, 1989. 995: p. 7–26.Google Scholar
  75. 75.
    Webster, G. A., et al., High Temperature Component Life Assessment. 1991, London: Imperial College of Science, Technology and Medicine - Lecture Notes.Google Scholar
  76. 76.
    Nikbin, K. M., Smith, D. J., and Webster, G. A., Prediction of Creep Crack Growth From Uniaxial Creep Data. Proc. of Royal Society, London, 1984. A396: p. 183–197.Google Scholar
  77. 77.
    Nikbin, K. M., Smith, D. J., and Webster, G. A., An Engineering Approach to the Prediction of Creep Crack Growth. Journal of Engineering Materials and Technology, 1986. 108: p. 186–191.CrossRefGoogle Scholar
  78. 78.
    Nuclear Electric, Assessment Procedure for the High Temperature Response of Structures, R-5, 1990.Google Scholar
  79. 79.
    ASTM, Standard Test Method for Measurement of Creep Crack Growth Rates in Metals, ASTM E 1457–92, 1992.Google Scholar
  80. 80.
    Ellison, E. G. and Harper, M. P., Creep Behaviour of Components Containing Cracks–a Critical Review. Journal of Strain Analysis, 1978. 13: p. 35–51.CrossRefGoogle Scholar
  81. 81.
    Nikbin, K. M., Smith, D. J., and Webster, G. A., Influence of Creep Ductility and State of Stress on Creep Crack Growth, in Advances in life prediction methods at elevated temperatures, D. A. Woodford and J. R. Whitehead ed. 1983, ASME: New York. p. 249–258.Google Scholar
  82. 82.
    Nishida, K., Nikbin, K. M., and Webster, G. A., Influence of Net Section Damage on Creep Crack Growth. Journal of Strain Analysis, 1989. 24 (2): p. 75–82.CrossRefGoogle Scholar
  83. 83.
    Nishida, K. and Webster, G. A., Interaction between build up of local and remote damage on creep crack growth, in Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R. W. Evans ed. 1990, Inst. Metals: Swansea. p. 703–713Google Scholar
  84. 84.
    Austin, T. S. P. and Webster, G. A., Prediction of Creep Crack Growth Incubation Periods. Fatigue and Fracture of Engineering Materials and Structures, 1992. 15 (11) p. 1081–1090.CrossRefGoogle Scholar
  85. 85.
    Ohji, K., Ogura, K., and Kubo, S., Stress field and modified J-integral near a crack tip under conditions of confined creep deformation. Zairyo (in Japanese), 1980. 29 (320) p. 467–471.Google Scholar
  86. 86.
    Saxena, A. Evaluation of C* for the Characterization of Creep-Crack Growth Behavior in 304 Stainless Steel. in Twelfth Conference. 1980. American Society for Testing and Materials.Google Scholar
  87. 87.
    Nikbin, K. M., “Consideration of Safety Factors in the Life Extension Modeling of Components Operating at High Temperatures”Effects of Product Quality Control and Design Criteria on Structural Integrity, ASTM STP 1337, R. C. Rice, D. E. Tritsch, Eds., American Society for Testing and Materials, 1998.Google Scholar
  88. 88.
    Nikbin, K. M. Transition Effects in Creep-Brittle Materials. in Mechanics of Creep Brittle Materials-2. 1991. Leicester, EnglandGoogle Scholar
  89. 89.
    Paris, P. C., Fracture Mechanics in the Elastic Plastic Regime. ASTM STP, 1977. 631 (American society for Testing and Materials): p. 3–27.Google Scholar
  90. 90.
    Forman, R. G., Kearney, V. E., and Engle, R. M., Numerical analysis of Crack Propagation in a Cyclic-loaded Structures. ASME Transaction, Journal of Basic Engineering, 1967. 89 (D): p. 459.CrossRefGoogle Scholar
  91. 91.
    Paris, P. C., Gomez, M. P., and Anderson, W. E., A Rational Analytic Theory of Fatigue. Trend in Engineering, 1961. 13: p. 9–14.Google Scholar
  92. 92.
    Kaneko, H., et al. Study on Fracture Mechanism and a Life Estimation Method for Low Cycle Creep-Fatigue Fracture of Type 316 Stainless Steels. in Low cycle fatigue and elasto-plastic behaviour of materials -3. 1992. Berlin, FRG: Elsevier Applied Science.Google Scholar
  93. 93.
    Nakazawa, T., et al. Study on Metallography of Low Cycle Creep Fatigue Fracture of Type 316 Stainless Steels. in Low cycle fatigue and elasto-plastic behaviour of materials -3. 1992. Berlin, FRG: Elsevier Applied Science.Google Scholar
  94. 94.
    Nikbin, K. M. and Webster, G. A., Prediction of Crack Growth under Creep-Fatigue Loading Conditions, STP 942, 1987, American society for Testing and Materials: Philadelphia. p. 281–292.Google Scholar
  95. 95.
    Austin, T. S. P. and Webster, G. A., Application of a Creep-Fatigue Crack Growth Model to Type 316 Stainless Steel, in Behaviour of Defects at High Temperatures, R. A. Ainsworth and R. P. Skelton ed. 15, 1993, Mechanical Engineering Publications Limited: London. p. 219–237.Google Scholar
  96. 96.
    ASTM E647–86a, ‘Standard test method for measuring fatigue crack growth rates’, Book of Standards, Am.Soc.Testing and Matls., Philadelphia, 1987, 03. 01, 899–926.Google Scholar
  97. 97.
    Nikbin, K.M. and Webster, G.A., ‘Creep-fatigue crack growth in a nickel base superalloy’ in ‘Creep and fracture of engineering materials and structures’, (Eds B. Wilshire and D.R.J. Owen ). Pineridge Press, Swansea, 1984, 1091–1103.Google Scholar
  98. 98.
    Winstone, M.R., Nikbin, K.M. and Webster, G.A., ‘Modes of failure under creep/fatigue loading of a nickel-base superalloy’, J. Matis Sci, 1985, 20, 2471–2476.CrossRefGoogle Scholar
  99. 99.
    Dimopulos, V., Nikbin, K.M. and Webster, G.A., ‘Influence of cyclic to mean load ratio on creep/fatigue crack growth’, Met. Trans. A, 1988, 19A, 873–880.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • K. M. Nikbin
    • 1
  1. 1.Technology and MedicineImperial College of ScienceLondonUK

Personalised recommendations