Advertisement

Basic Mechanisms of Creep and the Testing Methods

  • E. Czoboly
Part of the International Centre for Mechanical Sciences book series (CISM, volume 389)

Abstract

Pointing at the importance of material selection in design process, the responses of structural materials to loading are discussed. The response can be an elastic or a plastic deformation or the material can fracture. These physical processes are discussed briefly examining them in atomic scale as well as in microscopic and in macroscopic sense. The influence of loading conditions as e.g. temperature or alternating loading are discuss too. The damage processes due to the loading are also shown.

The usual testing methods are overviewed and the different material characteristics are criticised. It is shown that although the testing methods are simple models of the real loading conditions, the most material parameters are not well defined indicators and therefore their misuse can result serious mistakes. Difficulties in fatigue and creep testings are exposed.

Keywords

Plastic Deformation Fatigue Crack Fatigue Life Creep Rate Basic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Czoboly, E. (1995) I,iIn:iMechanical behaviour of materials at high temperature. Ed.:C. Moura Branco, R.Ritchie and V.Sklenicka. NATO ASI Series. Kluwer Academic Publisher. Dordrecht /Boston/London. 3–22.Google Scholar
  2. 2.
    Courtney, Th. H. (1990) IMcGrow-Hill Publishing Company. New York, USAGoogle Scholar
  3. 3.
    Schaft, W. (1972) IDeutscher Verlag für Grundstoffindustrie. Leipzig, GermanyGoogle Scholar
  4. 4.
    Finnie, I. and Heller, W.R. (1959) IMcGraw-Hill Company, Inc. New York/Toronto/London.Google Scholar
  5. 5.
    Irwin, G.R. (1958) IContr. to the First Symp. on Naval Struct. Mechanics. Stanford University, Stanford, USA.Google Scholar
  6. 6.
    Griffith, A.A. (1920) IPhil. Trans.Roy. Soc. London, A-221, 163–179.Google Scholar
  7. 7.
    Berkovic, M., Sedmak, A. and Janie, J. (1990) IProc. 5th Int. Fracture Mechanics Summer School. EMAS, Warley, U.K. 71–88Google Scholar
  8. 8.
    Ginsztler, J. (1989) IIn: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials. Ed.: K.T.Rie. Elsevier Applied Science, London 643–648.Google Scholar
  9. 9.
    Gillemot, L. (1963) IFreiberger Forschungshefte September, 5–13.Google Scholar
  10. 10.
    Gillemot, L. (1963) ISchweisstechnik 13.1–1.7. 305–312.Google Scholar
  11. 11.
    Czoboly, E., Havas, I. and Gillemot, F. (1982) I,iProc. Int. Symp.on Absorbed Specific Energy and/or Strain Energy Density Criterion Akadémiai Kiadó, Budapest, Hungary 3, 330–336.Google Scholar
  12. 12.
    Radon, J.C., Czoboly, E. (1972) IProc. Int. Conf. on Mechanical Behaviour of Materials, Kyoto, Japan, 543–557.Google Scholar
  13. 13.
    Havas, I., Schulze, H.D., Hagedorn, K.E. and Kochendörfer, A. (1974) IMaterialprüfung 16. Nr. 11. 349–353.Google Scholar
  14. 14.
    Czoboly, E. et al. (1989) IProc. ICF7. Advances in Fracture Research. Pergamon Press, New York, USA, 3555–3562.Google Scholar
  15. 15.
    Dauskardt, R.H. and Ritchie, R.O. (1993) IAdvanced Materials & Processes, July, 26–31.Google Scholar
  16. 16.
    Gell, M. and Leverant, R. (1973) IIn: Fatigue at Elevated Temperatures. Ed.: A. E. Carden, A. J. McEvily and C. H. Wells. ASTM Publication 520. Philadelphia, PA, USA. 37–66.CrossRefGoogle Scholar
  17. 17.
    Benham, P.P. (1958) IMetallurgical Reviews 3.No.11. 203–234.Google Scholar
  18. 18.
    Miller, K.J. and de los Rios, E.R. (1986) IEuropean Group on Fracture Publication 1. MEP Institution of Mechanical Engineers, London, UK.Google Scholar
  19. 19.
    Neuber, H. (1961) ITrans ASME, Series E., 83Google Scholar
  20. 20.
    Czoboly, E., Havas, I. and Ginsztler, J. (1984) IProc. 5th EGF. Lisbon, Portugal, EMAS, Warley, U.K. 481–494.Google Scholar
  21. 21.
    Czoboly, E. and Sandor, B.I. (1974) IEES Report No 39. University of Wisconsin, USA 1–236.Google Scholar
  22. 22.
    Broek, D. (1978) ISijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands.Google Scholar
  23. 23.
    Paris, P.C. and Erdogan, F. (1963) IJ. Basic Eng. Trans ASME Series D. 85. 528–534.Google Scholar
  24. 24.
    Tóth, L. (1994) IIn: Handbook of Fatigue Crack, Ed.: A.Carpinteri. Elsevier, Amsterdam 1643–1683.Google Scholar
  25. 25.
    Miller, K.J.(1991) I,iProc. of Institution of Mechanical Engineers, 205 1–14.Google Scholar
  26. 26.
    Radon, J.C. and Czoboly, E. (1988) IPeriodica Polytechnica 32. No. 2. 107–117.Google Scholar
  27. 27.
    Radon, J.C. (1990) IProc. 5th Int. Fracture Mechanics Summer School. EMAS, Warley, U.K. 117–134.Google Scholar
  28. 28.
    Webster, G.A. (1996) IIn: Mechanical behaviour of materials at high temperature. Ed.:C. Moura Branco, R.Ritchie and V.Sklenicka. NATO ASI Series. Kluwer Academic Publisher. Dordrecht /Boston/London. 169–193CrossRefGoogle Scholar
  29. 29.
    Saxena, A. et al. (1990) IIn:iElevated Temperature Crack Growth.Eds.: S.Mall and T.Nicholas.ASME Book No G00530.Google Scholar
  30. 30.
    Hollstein, T. and Kienzler, R. (1990) IProc. 5th Int. Fracture Mechanics Summer School. EMAS, Warley, U.K. 175–188.Google Scholar
  31. 31.
    Lukas, P., Kunz, L. and Sklenicka, V. (1996) IIn: Mechanical behaviour of materials at high temperature. Ed.:C. Moura Branco, R.Ritchie and V.Sklenicka. NATO ASI Series. Kluwer Academic Publisher. Dordrecht /Boston/London. 155–167.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • E. Czoboly
    • 1
  1. 1.Technical University of BudapestBudapestHungary

Personalised recommendations