Skip to main content

Basic Mechanisms of Creep and the Testing Methods

  • Conference paper
Book cover Component Reliability under Creep-Fatigue Conditions

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 389))

Abstract

Pointing at the importance of material selection in design process, the responses of structural materials to loading are discussed. The response can be an elastic or a plastic deformation or the material can fracture. These physical processes are discussed briefly examining them in atomic scale as well as in microscopic and in macroscopic sense. The influence of loading conditions as e.g. temperature or alternating loading are discuss too. The damage processes due to the loading are also shown.

The usual testing methods are overviewed and the different material characteristics are criticised. It is shown that although the testing methods are simple models of the real loading conditions, the most material parameters are not well defined indicators and therefore their misuse can result serious mistakes. Difficulties in fatigue and creep testings are exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Czoboly, E. (1995) I,iIn:iMechanical behaviour of materials at high temperature. Ed.:C. Moura Branco, R.Ritchie and V.Sklenicka. NATO ASI Series. Kluwer Academic Publisher. Dordrecht /Boston/London. 3–22.

    Google Scholar 

  2. Courtney, Th. H. (1990) IMcGrow-Hill Publishing Company. New York, USA

    Google Scholar 

  3. Schaft, W. (1972) IDeutscher Verlag für Grundstoffindustrie. Leipzig, Germany

    Google Scholar 

  4. Finnie, I. and Heller, W.R. (1959) IMcGraw-Hill Company, Inc. New York/Toronto/London.

    Google Scholar 

  5. Irwin, G.R. (1958) IContr. to the First Symp. on Naval Struct. Mechanics. Stanford University, Stanford, USA.

    Google Scholar 

  6. Griffith, A.A. (1920) IPhil. Trans.Roy. Soc. London, A-221, 163–179.

    Google Scholar 

  7. Berkovic, M., Sedmak, A. and Janie, J. (1990) IProc. 5th Int. Fracture Mechanics Summer School. EMAS, Warley, U.K. 71–88

    Google Scholar 

  8. Ginsztler, J. (1989) IIn: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials. Ed.: K.T.Rie. Elsevier Applied Science, London 643–648.

    Google Scholar 

  9. Gillemot, L. (1963) IFreiberger Forschungshefte September, 5–13.

    Google Scholar 

  10. Gillemot, L. (1963) ISchweisstechnik 13.1–1.7. 305–312.

    Google Scholar 

  11. Czoboly, E., Havas, I. and Gillemot, F. (1982) I,iProc. Int. Symp.on Absorbed Specific Energy and/or Strain Energy Density Criterion Akadémiai Kiadó, Budapest, Hungary 3, 330–336.

    Google Scholar 

  12. Radon, J.C., Czoboly, E. (1972) IProc. Int. Conf. on Mechanical Behaviour of Materials, Kyoto, Japan, 543–557.

    Google Scholar 

  13. Havas, I., Schulze, H.D., Hagedorn, K.E. and Kochendörfer, A. (1974) IMaterialprüfung 16. Nr. 11. 349–353.

    Google Scholar 

  14. Czoboly, E. et al. (1989) IProc. ICF7. Advances in Fracture Research. Pergamon Press, New York, USA, 3555–3562.

    Google Scholar 

  15. Dauskardt, R.H. and Ritchie, R.O. (1993) IAdvanced Materials & Processes, July, 26–31.

    Google Scholar 

  16. Gell, M. and Leverant, R. (1973) IIn: Fatigue at Elevated Temperatures. Ed.: A. E. Carden, A. J. McEvily and C. H. Wells. ASTM Publication 520. Philadelphia, PA, USA. 37–66.

    Book  Google Scholar 

  17. Benham, P.P. (1958) IMetallurgical Reviews 3.No.11. 203–234.

    Google Scholar 

  18. Miller, K.J. and de los Rios, E.R. (1986) IEuropean Group on Fracture Publication 1. MEP Institution of Mechanical Engineers, London, UK.

    Google Scholar 

  19. Neuber, H. (1961) ITrans ASME, Series E., 83

    Google Scholar 

  20. Czoboly, E., Havas, I. and Ginsztler, J. (1984) IProc. 5th EGF. Lisbon, Portugal, EMAS, Warley, U.K. 481–494.

    Google Scholar 

  21. Czoboly, E. and Sandor, B.I. (1974) IEES Report No 39. University of Wisconsin, USA 1–236.

    Google Scholar 

  22. Broek, D. (1978) ISijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands.

    Google Scholar 

  23. Paris, P.C. and Erdogan, F. (1963) IJ. Basic Eng. Trans ASME Series D. 85. 528–534.

    Google Scholar 

  24. Tóth, L. (1994) IIn: Handbook of Fatigue Crack, Ed.: A.Carpinteri. Elsevier, Amsterdam 1643–1683.

    Google Scholar 

  25. Miller, K.J.(1991) I,iProc. of Institution of Mechanical Engineers, 205 1–14.

    Google Scholar 

  26. Radon, J.C. and Czoboly, E. (1988) IPeriodica Polytechnica 32. No. 2. 107–117.

    Google Scholar 

  27. Radon, J.C. (1990) IProc. 5th Int. Fracture Mechanics Summer School. EMAS, Warley, U.K. 117–134.

    Google Scholar 

  28. Webster, G.A. (1996) IIn: Mechanical behaviour of materials at high temperature. Ed.:C. Moura Branco, R.Ritchie and V.Sklenicka. NATO ASI Series. Kluwer Academic Publisher. Dordrecht /Boston/London. 169–193

    Book  Google Scholar 

  29. Saxena, A. et al. (1990) IIn:iElevated Temperature Crack Growth.Eds.: S.Mall and T.Nicholas.ASME Book No G00530.

    Google Scholar 

  30. Hollstein, T. and Kienzler, R. (1990) IProc. 5th Int. Fracture Mechanics Summer School. EMAS, Warley, U.K. 175–188.

    Google Scholar 

  31. Lukas, P., Kunz, L. and Sklenicka, V. (1996) IIn: Mechanical behaviour of materials at high temperature. Ed.:C. Moura Branco, R.Ritchie and V.Sklenicka. NATO ASI Series. Kluwer Academic Publisher. Dordrecht /Boston/London. 155–167.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Czoboly, E. (1998). Basic Mechanisms of Creep and the Testing Methods. In: Ginsztler, J., Skelton, R.P. (eds) Component Reliability under Creep-Fatigue Conditions. International Centre for Mechanical Sciences, vol 389. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2516-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2516-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82914-1

  • Online ISBN: 978-3-7091-2516-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics